The No-Work Garden Book

Occasionally one of the GPs will blog about a book that’s particulary good – or not.  I was given a copy of Ruth Stout’s No-Work Garden Book a few years ago and frankly hadn’t given much more than a passing glance.  But last week I thumbed through it and was immediately struck by the quality of science this self-taught gardener brought to her writing.

Much of Ruth’s gardening practices included the use of organic mulch on vegetable gardens, and she regularly wrote to scientists to ask for their interpretation of “expert” advice.  Here’s an excerpt from a letter written 50 years ago by Dr. Arthur Pratt from Cornell:

“Yes, leaves, hay, straw, etc. that are not decayed or that are only partially decayed will rob the soil of nitrogen if they are mixed into the soil. But when used on top the way you use them, I have never seen a nitrogen shortage as a result of the mulch.”

So, we’ve known for at least 50 years that organic mulches don’t cause nitrogen deficiencies.  Why does this misconception persist, especially for woody mulches?

Ruth also challenged the use of plastic mulches, then relatively new to the garden product market.  She understood the benefits of a no-till approach to maintaining healthy soils.  She has a whole chapter entitled “Make Mine More Mulch.”

So here’s to Ruth Stout, the original “Mulch Queen.”

Packing Pearls

Yes, not my day to post, but I just received an email with a link to a new product called Packing Pearls.  These are polystyrene balls that fill the bottom of large containers so they aren’t so heavy.  They are promoted as “improving water drainage and oxygen flow.”  You can find a link here

The “pearls” are separated from the soil and plant roots with a pot liner (composition unknown).  We’re told that the roots can’t grow through the pot liner.  So now my question:  can a material that “improves water drainage and oxygen flow” be impervious to root growth?  Doesn’t it sound as though you’d be waterlogging the soil by installing this liner?

I honestly don’t know the answers to these questions, and the web site is not detailed (nor does it contain any links to research).  The emailed advertisement states “Tests show that flowering plants bloom two to three months longer when grown in containers with a base of Packing Pearls. Plants are also visibly healthier and hardier.”

Anyone used this system before?

Peanuts

I’m not from the South, and so I can’t call myself a Southerner like Holly can, but I did spend 6 years in Georgia.  There are lots of things about it which I miss: winters which are more like a Minnesota fall, the almost disgustingly friendly people (OK, there was that one time that I was chased by a guy with an SKS assault rifle — but that was an exception — generally Southerners are the nicest people you could ever want to meet), and, especially, the food.  I love okra, I love grits, I love country fried steak, I love mustard greens, collard greens, fried catfish, sweet tea (which is starting to become popular here) etc. And for those of you thinking well shoot, you can get that at your nearest Cracker Barrel (which I frequent) — IT JUST ISN’T THE SAME.  One of the foods which I miss the most though — one that hasn’t found its way to Minnesota yet — is the boiled peanut.  For those of you who don’t know what a boiled peanut is, it’s a little piece of heaven that has been boiled in a tub of hot salt water for a long time so that, when you break open the peanut’s shell, now the texture of watery cardboard, the seeds inside are soft, warm and, you guessed it, salty.  So, why am I telling you this?  Because I can’t suppress my excitement any longer.  Tom Michaels. a good friend of mine who is a transplant from a Canadian University where he worked on bean breeding, and I recently were talking about boiled peanuts and he told me that he has a peanut variety which will grow here in Minnesota without too much trouble and which is can be used to make hot boiled peanuts.  So I’m in the process of finding excuses to plant this critter — I’m going to plant it between rows of trees, in grass plots, in vegetable gardens — and then I’m gonna harvest them all and make hot boiled peanuts through the entire winter next year!

International Ag Labs – who are they and what do they do?

Last week I posted a short message about this company, asking you to do a little homework.  Bryn, CP, and Karen all have teased out some details that agree with my skepticism on how reliable this company is for soil testing and analysis.  (See last Wednesday’s post and comments if you haven’t read them already.)

To back up a little bit, I received an email from LB last week, along with the attached soil test, analysis and recommendations. LB intends to do some “market gardening” and here are his questions:

1. Is there anything to this perspective? Understanding your soil and rl37 (a “Jack of all trades” product).

2. I “get” that I should not willy nilly spread compost over everything, but what in the attached recommendation (based on the soil analysis) should I follow (Note: Crescendo and Stimulate are no longer offered, but there are lots of other interesting products here.)

3. Have you read any peer reviewed research that supports their “High Brix” market garden approach that uses sugar content and refractive index to supposedly correlate to improved flavor and higher nutrient content in selected vegetables?  I have heard of chefs using this to evaluate certain produce (carrots and tomatoes) in the market but nothing in a peer reviewed journal.”

Take a look at the linked report from IAL (from the second paragraph).  This is a confusing analysis, as it combines traditional ppm measures with pounds/acre.  (My understanding is that you can divide this latter number by 2 to get ppm.)  However, pounds/acre only represents a portion of what’s actually available in the soil.  It’s not an indication of how much, if any, of these nutrients to add.  (If you’ve never seen U. Mass Amherst’s soil testing lab, take a look at their webpage, especially their fact sheets related to soil testing.)

What irks me is the recommendations (which are in the first table in the attached document).  I’m not even sure of the rate – I assume it’s per acre, but who knows? And what is the purpose of all this stuff?

This company is heavily used by many people, including researchers (if you Google the name of the company along with site:.edu, you’ll find reference to articles and university reports that use their services.

Let’s have some discussion on this.  I’m certainly not an expert on performing soil tests, but I’ve had enough of them done that I have a pretty good idea how to interpret them and their recommendations.

Cool tree App for i-Phone users

I’m preparing to give my Woody Plant Physiology students their first opportunity to flaunt their new-found knowledge (aka Exam one) so only time for a short post.

As my fellow Garden Professors are aware, I am among the least tech-savvy people roaming the halls of academia these days and was long ago declared roadkill on the information superhighway.  However, I recently found out about a new App for the i-phone that could lure me back into the 21st century.


Programmer Brett Camper has developed an i-Phone app called ‘Trees Near You’.  The App is based on a street tree inventory for the City of New York and allows users to view maps of over 500,000 street trees.  For each tree users can look up info about individual trees including their size and estimated environmental and economic benefits based on energy savings and storm water retention.   The App also links to Wikipedia pages that provide more info on the tree’s botanical characteristics.  For more info, including a QuickTime movie demo, go to: http://www.treesnearyou.com/


While it may be easy to quibble with particular estimates of tree values or a particular bit of info from Wiki, there is no arguing this is pretty cool stuff.  Hopefully other App writers will be inspired and Trees Near You-type Apps will start appearing for other cities.  This is a great educational tool and a great way for urban and community forestry programs to promote the value of trees where we live.

Native vs. introduced species – the discussion continues

I was asked earlier today to comment on the Garden Rant blog regarding the issue of nonnative plants and insect survival, specifically in reference to Dr. Tallamy’s research.  Though I haven’t read his popular book (Bringing Nature Home), I did read one of his most recent papers (DW Tallamy and KJ Shropshire, 2009.  Ranking lepidopteran use of native versus introduced plants, Conservation Biology 23(4): 941-947).  The authors argue that lepidopterans prefer native to alien species for egg laying.  A serious problem I see in this paper is that the authors are literally comparing apples to oranges.  They do not compare effects among species in the same genus (the reasoning is there aren’t enough publications to look at), but among genera.  Thus, they lump at least 179 “alien” woody species into “native” woody genera and compare those to woody genera that are completely alien.  There are only 112 species in the latter.

I would bet that if he separated out these 179 woody species and added them to the alien genera list his findings would be quite different.

Comments?

So much for my happy summer vacation

It figures.  After I write a happy post I get an email question that brings me back to reality.  I plan on sharing a little more about the question – and my answer – with you later, but I’m going to give you some homework.  Let’s see what you can find out about these topics:

International Ag Labs

High Brix Gardens

Reams’ Biological Theory of Ionization

Hint: they are all interrelated.  Post your comments on the blog and let’s see where we go with the discussion.

Friday quiz…yes it’s coming

As you might know, I’ve been at the NW Flower and Garden Show this past week, and yesterday I had two seminars to give.  So I didn’t have a chance to post a quiz, and this morning I’m back over for a few hours before I’m done.

I’m hoping to find an interesting Garden Prof question topic at the show, so I’m taking the camera today.  If I can’t, I have a backup.  But I promise there will be a question up by today!

Checking up on FreezePruf

As winter continues to hold its icy grip over the middle of the country, our thoughts don’t stray too far from plants and cold.  Recently one of the graduate students in our department, Nick Pershey, brought to my attention a new product called FreezePruf that claims to improve plant cold hardiness by up to 9 degrees F.  Since a couple of degrees of improved cold tolerance can be a big deal (just ask a Florida citrus grower after a 29 deg. F night), nine degrees F. is huge.  At first blush, FreezePruf looks ripe for the Garden Professors’ picking.  The promotional claims are sensational and are followed by the obligatory exclamation points.  “Just spray it on.  It’s like moving your temperature zone 200 miles south!”  So the obvious questions are: What is it? What does it do?  Does it work?

What is it? FreezePruf is a mixture of several fairly common compounds.  These include WiltPruf (a film-forming anti-transpirant), SilWet (a surfactant – helps material spread and stick to leaves), AgSil (potassium silicate), polyethylene glycol (an osmoticum – PEG is widely used in cosmetics and laxatives), and glycerol.

What does it do?  To understand what FreezePruf does it’s helpful to understand how freezing injury occurs in plants and how plants tolerate freezing.  First, remember that water exists in plant tissues between plant cells (extracellular) and within cells (intracellular).  When plants are exposed to freezing temperatures ice forms first between cells (extracellular ice) but not within the cells.   This is due to the fact that water within cells contains solutes that depress the freezing point.  Freeze damage can occur in a couple ways.  One is ice formation within cells (intracellular ice).  Tissues can also be damaged if cells become excessively dehydrated as a result of extracellular ice formation – the ice between cells acts like a salt or osmoticum to continue to draw water of the cell and into the intercellular spaces.  The formulation of FreezePruf apparently acts to depress the freezing point within the cells (due to potassium ions and PEG) and to limit cell dehydration.

Does it work?  At present the only data available on FreezePruf is from the product developers in their patent application.  To date, nothing on the product has been published based on peer-reviewed studies; which always makes the Garden Professors skeptical.  The product development team, however, is lead by Dr. David Francko, a plant biologist and Dean of the Graduate School at the University of Alabama.  Data in the patent application show improved cold hardiness on the order of about 4-5 deg. F for a variety of cold sensitive plants, mostly palms, bananas and annuals.  In some cases the protection was only a couple of degrees but in one case ranged up to 9 deg. F.

What’s the bottom line? For most gardeners the principle benefit of FreezePruf would be to protect plants from the first few early frosts in the fall.  The question is whether you’d rather spray a relatively untested product versus relying on tried and true methods (e.g., bringing container planters in, covering sensitive plants with old bedsheets).  The developers claim FreezePruf can last up to 6 weeks – that could save a lot of dragging bedsheets around the yard.

Caveats: FreezePruf is marketed as ‘Eco-Safe’  – whatever that means – although the MSDS sheets of some of the component products indicate eye and skin irritation are possible.  Until a longer-term database is available I would be cautious of unintended results.   For example, could this stuff make plants more attractive to pets or wildlife?  We’ve seen reduced cold hardiness in conifers using WiltPruf alone, it would be interesting to see some data on Freeze-Pruf on conifers before recommending it for use on those.

Odds ‘n Ends

Some odds and ends today that I either #1 was asked to post or #2 couldn’t resist posting.  First for the picture that I was asked to post.

This, as far as we can tell (we being myself, my technician, and our grounds department), is the American elm tree that was being planted in that picture from 1909 which I posted on January 21.  Dutch elm disease was devastating here in the mid 1900s as it was everywhere, but this region of the world was lucky and there were a number of escapes — and resistant trees (that’s an ongoing project of mine — working with DED resistant elms — I’ll probably post more about it this spring).  Anyway, the tree is a little smaller than I would normally expect for an elm of this age, but the proximity of the road and sidewalk could easily have stunted its growth.

Now for the stuff that I can’t resist posting — mostly having to do with Bert’s post on January 25.  Chad (my technician — if you follow the blog you’ll remember him, 6’4″ — etc.) was showing me a book titled Shade-Trees in Towns and Cites by William Solotaroff published in 1911 and it had this great shot of filling a tree cavity.  So here it is:

The book also had a great shot of what they did to a trees canopy before they planted:

This type of pruning isn’t necessary at all.  When trees are planted they adapt to the amount of roots which they have by producing fewer, or smaller leaves.

Update:

Here is a photo of the leaves of a freeman maple which was severely rootpruned right before planting and, below it, the leaves of a similar maple whose roots were left pretty much intact (both plants were container grown).

As you can see, trees have their own methods of dealing with root loss — no need for us to come in and clip their tops off.  Now, two years later, both of these trees (and all of the others in the research plot) look pretty much identical.