Urban Gardening Considerations

Along with the trends of buying local food, buying organic, etc., there seems to be an increasing interest in the ultimate local food source – a garden. This includes in urban areas. Urban gardening is a great way to save money on food, a great source for fresh vegetables – especially in “food deserts”, and an easy way to introduce kids to where the food on their plate comes from. However, there are a couple potential obstacles you should consider first before starting your urban garden.

"Graze the Roof" by Sergio Ruiz
“Graze the Roof” by Sergio Ruiz

First, in urban environments the possibility that soil could have been contaminated with heavy metals, petrochemicals, etc. is pretty high, especially in older neighborhoods. Lead, which was once a common additive to gasoline and paint, is a common contaminant in urban soils.  and can be absorbed by the roots of the vegetables you grow. Because of this, that lead can eventually end up in the food on your plate. Most lead poisoning comes from ingesting lead (like eating lead paint chips…), so it’s important to know that the soil you’re using for your garden is safe. You should take some soil samples and send them to a lab in your state that can test for heavy metals like lead. Usually the Land Grant university in your state (if you’re in the US) will have a soil testing lab where these tests can be performed for a nominal cost. Other forms of contamination are possible as well, such as chemicals from cars, asphalt , laundry-mats, etc. These chemicals are more difficult to test for, so your best bet is to find out the history of your garden plot. These records should be available from your local city government, perhaps even online. Read more about contamination in this post.

Second, urban soils are often compacted from foot, car, or perhaps machinery traffic. Compacted soils make it difficult for plants to grow, mainly because the plant roots are not strong enough to penetrate the compacted soil, and thus cannot gather enough water or nutrients for the plant to survive, let alone grow and produce vegetables. Compacted soils are especially common in newer housing developments where entire blocks of houses were built around the same time. The construction companies often remove all of the topsoil prior to building the houses. The soils are then driven over by construction machinery and compacted. Then sod is laid directly on top of the subsoil. This makes for soils with very poor growing conditions for both lawns and gardens.

A good alternative for areas with either contaminated or compacted soils is to use a raised garden bed with soil that was brought in from a reliable source. You can buy bags of potting soil from a local home and garden supply store, but a more economic alternative is to have a trailer full of topsoil trucked to your raised bed. When you build your raised garden, be sure to use untreated wood. Some of the chemicals used to for pressure treated lumber are designed to kill fungi that break down wood. These chemicals, some of which contain arsenic, can leach out of the wood and into the soil used for your veggies! However, untreated wood, though it might not last as long, will still last for decades and is probably cheaper anyway. There are lots of great designs and how-to sites that show you how to build a raised garden bed. Here’s an extension bulletin from Washington State University on raised bed gardening. The raised beds shown below are from when I first installed them in my community garden plot in Manhattan, Kansas. One is now a strawberry patch (the border helps contain the strawberries to a defined area), and the other is used for mostly cold season crops.

This image shows two raised garden beds with freshly added soil and surrounded by straw in a garden plot.
Raised garden beds in Colby Moorberg’s community garden plot.

Space is also another consideration. If you don’t have the space for a garden or a raised garden, then perhaps you need to think outside the box (raised garden pun intended) and consider container gardening. Container gardening is exactly what its called – growing ornamental or vegetable plants in containers. Containers can be traditional plant pots, buckets, plastic totes, or any other container with an open top.

The advantages of container gardening include:

  • Containers can be arranged to optimally use the space available, or rearranged if you like to mix things up sometimes
  • Potting soil can be used, and can be trusted to be lead/chemical-free
  • Work can be performed on a bench, thus avoiding working on your knees
  • Containers can be arranged to provide decoration for your outdoor space
  • Many objects found around the house can be cheaply converted into decent containers
Vertical Pallet Garden. Photo by Heather Foust

Vertical gardening is a version of container gardening that uses your available space  efficiently. Much like using shelves to save space inside your home, vertical gardens use shelves, stairs, racks, etc. to make use of vertical space. The options for vertical gardens are only limited by your imagination. Here are a few extension bulletins on vertical gardening from Tennessee State University and the University of Nebraska.

The main disadvantage of container gardening is that you’ll likely have to water more frequently, but there are strategies to overcome that problem – see my prior blog post about saving water with container gardening. Another good resource is the University of Illinois Container Successful Container Gardening website.

In summary, the biggest obstacles to urban gardening are soil contamination, soil compaction, and space limitations. I’ve given you a few good alternatives to overcome those issues. Also, be sure to fertilize appropriately, lime as needed, and make sure the plants that you pick are appropriate for the sunlight that’s available. Your local garden supply store or extension agent can help you with suggestions on those issues.

If you know of an urban gardening obstacle that I didn’t address, please leave a comment and I’ll see if I can help out.

Happy digging!

Colby

This was originally posted on Colby’s soil science blog, ColbyDigsSoil.com. Some edits, updates, and adaptions were made for this post.

The Dog Days are here

The dog days of summer are here and as we approach the longest day of the year (summer solstice is June 21st), we are also feeling the advance of high summer temperatures. Long days mean more evapotranspiration and water withdrawal from the soil. During these long days, plants photosynthesize more, grow more, and use the most water during the month of June.  In fact evapotranspiration looks generally looks like a bell shaped curve when plotted by month (figure 1).  Soils dry quickly and irrigation or rainfall may not keep

Figure 1. Evapotranspiration data by month. Image from US geological Survey

up with plant demands for water. This can bring some very real stress to garden plants and turfgrasses.  If you live in a place that does not receive summer rainfall you will certainly need to increase irrigation to reflect day length at this time of year.

Transpiration is water loss through leaves and is not  part of photosynthesis, but it is critical to cool the plant. As soils dry out, the level of abscisic acid produced in roots increases and translocates to leaves resulting in the closing of the pores called stomates. Closed stomata reduces transpiration, but only at a steep cost to the plant. That cost is heat build up. Since this is also the time of the hottest weather it is not long before leaf temperatures rise to lethal levels and sunburn results. Sunburn is always seen as damage in the middle of the leaf because that is the hardest spot to dissipate the heat. The edges that lose heat rapidly are usu

Figure 2. Sunburn occurs in the middle of leaves as in this Windmill palm (Trachycarpus fortunei)

ally not burnt (Figure 2).

Short of applying water properly, what else can be done?   Mulches are a great way to avert drought stress since they reduce water loss from the soil surface. The effect is greatest where sun hits the soil. So in new gardens or gardens without a lot of shade, mulches are essential during hot weather to reduce plant stress. Wood chip mulches are particularly helpful in that wood does not reflect, hold or emit heat as much as soil, so it protects adjacent plant surfaces from heat.

How about water absorbing polymers or hydrogels? While much of the allure of these “water crystals” has worn off, it is still good to remind that polymers don’t change evapotranspiration rates of plants so even if they did all the things they claim to, they won’t get plants through a hot summer any better than if they were not present in the soil.

With the longest days come warming soil temperatures.  Hot soil can affect plants especially perennials.  Ground that is not mulched will radiate infrared onto plant surfaces, this can increase stress. This is yet another reason to employ wood chip mulches around perennials.

Figure 3. Impact sprinklers raise humidity on very hot days relieving plant stress

So when it is particularly hot and dry how can we get plants through this stressful time? Running sprinklers (where practical) will increase humidity and if soils are dry reduce stress (Figure 3).  For annual plants, some shade is often helpful. Applying shade cloth to sensitive or newly planted/emerged plants can cut stress dramatically.  As plants establish, the shade can be gradually removed.  Keep irrigation even so moisture is always there to maintain transpiration — this  is essential during warm weather and long days. For perennial plants there is not much to be done. While pruning will reduce the amount of surfaces that lose water, pruning (thinning) will also lead to temperature increases in the plant canopy since the evaporative surface area of the plant is decreased. So while soil water is saved, canopy temperatures may rise, this may be a poor trade off in the hottest months of the year.  Over-pruning opens plants up for sunburn on stems which can lead to fungal canker infections by pathogens like Botryosphaeria. This is very common in Apples.

Another treatment you may have heard claims for are anti-transpirants. These are products that are sprayed on plants to create a film that will cut water loss from leaves. Taken from a recent Amazon search I found the following product description recently… “Product is a water-based, semi-permeable polymer coating that can minimize the damages from climate related stresses, such as frost and freeze, heat stress and sunburn, drying winds, and transplant shock. Applied as a foliar spray, Product provides a unique non-toxic, biodegradable, elastic membrane over the plant surface to reduce moisture loss and insulate the plant.” While there may be an application (such as freeze protection) that makes sense for this kind of product somewhere, I don’t see it in your garden during hot weather. Cutting transpiration (“reducing moisture loss”) will increase the heat on leaves, so one of the common side effects of using these products is hot weather is damage or phytotoxicity.  Like polymers the fad is faded.

Sometimes the dog days of summer bring insurmountable challenges. In early summer of 2018 in California, temperatures reached record levels of 115-120. Even in irrigated situations plants were damaged, short of providing immediate shade, there was nothing to be done and many plants were injured, even native plants are not adapted to such high temperatures. If these conditions occur in your garden, you may not be able to limit damage, but there are considerations for after care when this kind of blitz occurs. Don’t prune anything immediately, let the leaves fall and buds form because stems may be intact. Prune away injured plant parts after regrowth begins. If injury is severe, cut back on irrigation. Injured plants don’t require as much water because there is less functional  leaf area. This is why root root rot often follows this sort of severe injury. The summer solstice is here—I can already feel the shortening days of fall some distance away.

Reference

Costello, L.R., E.J. Perry, N. P. Matheny, M.J. Henry, and P.M. Geisel.  2014.  Abiotic disorders of Landscape Plants.  University of California Division of Agriculture and Natural Resources Publication #3420.

Ripe for the picking: Which fruits keep ripening after harvest?

“Will my peppers continue to ripen? How about my eggplants?”  It is common knowledge to most gardeners (and home cooks) that tomatoes will ripen on the kitchen counter, as will bananas and several other fruits.  You know that one day your bananas look perfectly ripe and the next they’re a brown mush But does this work for all fruits?   We often get questions about whether specific fruits will continue to ripen after picking.  And the answer is….. it depends.

How green were my peppers…

One of these fruits is not like the other

The answer as to whether a fruit will continue to ripen after harvest depends on which one of two groups it falls into.  These groups are climacteric and non-climacteric fruits.  In short, climacteric fruits are the ones that will continue ripening after harvest and non-climacteric fruits are ones that don’t ripen after harvest.

Image result for ethylene

This refers to the “climacteric phase” of fruit ripening where there is an increase in the gaseous plant hormone ethylene and an increase in respiration, which drives the ripening process. It is the climacteric fruits that will keep ripening once they’ve been harvested, thanks to ethylene.  The only stage of maturity for non-climacteric fruits after harvest is…..compost.

As long as you’re green, you’re growing.  As soon as you’re ripe, you start to rot. -Ray Kroc

Almost all fruits produce ethylene, but non-climacteric fruits produce them at much lower levels and do not rely upon it as the main driver of ripening.  I’ll go into a bit more detail in a bit, but first – which fruits are climacteric and which are non-climacteric?

Common Climacteric Fruits Common Non-Climacteric Fruits
Apple Brambles (raspberry, blackberry, etc).
Apricot Citrus (oranges, lemons, limes, etc.)
Avocado Eggplant
Banana Grape
Blueberry Melon (including Watermelon)
Cantaloupe / Muskmelon Pepper *
Cherry Pumpkin
Fig Squash (summer and winter)
Kiwi Strawberry
Mango Cherry
Papaya
Pawpaw
Peach
Pear
Plantain
Plum
Tomato
*Some evidence of climacteric ripening in hot peppers

Image result for avocado ripe meme

The ripening process

Ripening is genetically programmed – meaning that it is highly dependent on processes that are regulated by genes and it specific to each species.  Parts of the process are started and stopped due to the transcription and translation of genes, which are in turn controlled by signals such as chemical compounds, physiological stages of the plant, climate, and so on.  These ripening processes have a lot of end results – sugars accumulate in the fruit, pigments develop, some compounds that have pleasant flavors develop while others that are unpleasant are broken down, some of the pectins in the fruit break down to make it softer, and on and on.

Tomatoes – the classic climacteric fruit
Getting close…

Research shows that ethylene, the simple little gaseous hormone plays a crucial role in the ripening of climacteric fruits by altering the transcription and translation of genes responsible for ripening.  Ethylene is the dominant trigger for ripening in these plants.  Ethylene receptors in the cells are triggered by the presence of the gas which leads to cascade effect.  This is why ethylene can be introduced from other fruits to trigger ripening in fruits that aren’t ready to ripen.  If you’ve heard of the tip to put an apple in a bag full of some other fruit to get it to ripen, it actually works – as long as it is a climacteric fruit.

The same ripening processes happen in non-climacteric fruit as well, but they are not dependent on the presence of ethylene.  In fact, these pathways are also present in climacteric fruits – the ethylene-dependent processes are just the dominant (and faster) way that they ripen.

Controlling ripening

The dependence on ethylene for a vast majority of fruits to ripen has been used by farmers and the food industry for a long time to keep climacteric fruit more stable for shipping.  These fruits are harvested “green” before they ripen and shipped unripe since they are much firmer and much less likely to get damaged in transit.  These days, bananas, tomatoes, and other climacteric fruits are likely to be given a treatment that temporarily inhibits the ethylene response before harvest or shipping to extend their shelf life further.  Once they’re close to their final destinations they’ll either be allowed to ripen on their own or given a treatment of ethylene to speed back up the ripening process.

What we gain in shelf-life and reduced food waste we do lose in a bit of flavor.  Since the fruits are no longer attached to the plant when they ripen they don’t have the chance to transport more sugars and flavor compounds from the mother plant.  So “vine ripened” fruits do have a bit more sweetness and flavor than those that are picked green.  Having just gotten back from Rwanda, a country where bananas are a common staple food I can attest that the ones that ripen on the plant are much sweeter than those we get shipped in to the US – you know, the ones that will ripen next week sometime if you’re lucky.  There were even some in our group that don’t care for bananas here that loved the ones we had at breakfast every morning.

Grapes must stay on the vine to ripen

One possible direction for biotechnology is the engineering of plants to alter or eliminate the ethylene ripening response to reduce food waste and spoilage.  Since many genes that are responsible for ethylene production such as enzymes that catalyze the production of ethylene precursors, or proteins that serve as ethylene receptors have been identified, work is being done to develop delayed ripening by altering or knocking out these genes in a variety of crops.

Sources

Alexander, L., & Grierson, D. (2002). Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. Journal of experimental botany53(377), 2039-2055.

Pech, J. C., Bouzayen, M., & Latché, A. (2008). Climacteric fruit ripening: ethylene-dependent and independent regulation of ripening pathways in melon fruit. Plant Science175(1-2), 114-120.

Lelièvre, J. M., Latchè, A., Jones, B., Bouzayen, M., & Pech, J. C. (1997). Ethylene and fruit ripening. Physiologia plantarum101(4), 727-739.

Cornmeal magic – the myth that will not die

Way back in 2010 (and then again in 2012) I wrote about a bizarre belief that cornmeal could be used to treat fungal diseases, from lawn spot to athlete’s foot. Rather than rehash what’s already been written, I’ll invite readers to read those posts for background. And of course look at the comments, which are…interesting.The weird thing is that this post from 2010 is the single most popular post on the blog. (Our stats are only for the last two years since we migrated the web site – who knows how many there were before May 2017?)

Blog stats over two years

The consistent popularity for the topic spurred me to publish a university fact sheet on the use of cornmeal and corn gluten meal in home landscapes and gardens. This fact sheet reviews the pertinent literature, and makes recommendations that are pretty much the same as those I made almost 10 years ago. Nothing has changed in the research world to support cornmeal as a fungicide.

But wait, there IS something that’s happened since 2010! Now cornmeal is being touted as an insecticide! In fact, if you go to Google and search for “cornmeal” and “insecticide” you’ll find thousands of hits.  As you might expect, there’s no research to support this notion: researchers in Maine, for instance, found no effect of cornmeal on fire ants. However, it is used as a bait to deliver actual insecticidal chemicals.

Way back in 1937.

But facts don’t get in the way of home remedies, such as Lifehacker’s eyebrow-raising advice.

Hmmm…

By refining the search to only include university websites (use “site:.edu” to do this), and swapping out “ants” for “insecticide,” you’ll find at least one Master Gardener group happily (and illegally) recommending cornmeal as an ant killer. The popular mode of action is either (1) they can’t digest cornmeal and starve or (2) the cornmeal absorbs water in their gut and they explode.

Boom!

This reminds me of yet another food product – molasses – recommended for killing ants. Since you’re already here, you might as well check out Molasses Malarkey parts 1, 2, and 3 too.

Might I recommend everyone use their cornmeal and molasses to make bread or cookies or pancakes? There are some delicious recipes on the internet.

Yum!