Putting down a danger tree

I’ve been a gardening mythbuster for almost a quarter century. You’d think the quality of information would slowly be improving, given the increased sophistication of many gardeners regarding their information source. But every day my news feed connects me with articles that I’m sure some AI entity thinks will be enlightening. One recent story getting lots of eyeballs is entitled “The Benefits of Girdling a Tree Vs. Cutting It Down.” It makes for a good application of the CRAP analysis. While the link to the publication I’ve provided will go into more detail on CRAP analysis, all you need to know for this post is we’re going to assess Credibility, Relevance, Accuracy, and Purpose of the information.

Urban trees whose roots have been severely pruned should be removed to minimize the risk of failure.

First, let’s consider the Credibility of the source. According to HouseDigest.com, the author is “a plant mom…intrigued by nature and plant life which she exhibits by caring for and doting on her succulents.” Her college degree was in applied biochemistry, which has no substantial connection to applied plant and soil sciences. Bottom line, the author is not an expert in the science of tree care.

Let’s look at Accuracy next (we’ll get to relevance later). The author’s premise that girdling is “another great option” for tree management is grossly inaccurate. The article contains no links to any published research supporting her opinions, and demonstrates a lack of understanding woody plant physiology. The author states that girdling “would prevent erosion from occurring” in contrast to cutting the tree down which apparently removes “the tree roots acting as a protective cover for the soil.” Cutting a tree down removes its crown, but leaves the root system undisturbed. The roots stop transporting water aboveground (there’s no demand for it any longer) thought they can continue to grow as long as they have stored resources. Eventually they will die and their woody structure slowly decomposes.

Erosion’s going to happen any time you have unprotected soil: roots aren’t a “protective covering” (but mulch is)

Girdling the tree, on the other hand, does not prevent root uptake and transport of water through the xylem to the crown of the tree. It does prevent phloem movement of sugars and other resources from the crown to the roots. In other words, roots remain active in transporting water and nutrients but slowly starve to death without phloem-transported sugars and other resources. A good article on the topic of tree girdling goes into more physiological detail on the process that causes trees to decline “before entering an irreversible state of desiccation caused by definitive root death.”

Another possibility is that the girdled tree might send up new shoots below the girdling, leading to the formation of a new crown. Without constant vigilance in removing these new branches, the tree will survive and presumably continue to cause whatever problems that led to the original mismanagement.

The author also suggests that girdling is useful in preventing disease spread: “A sick tree would need to be killed in order to prevent the disease from spreading out to other trees and vegetation.” Or, if your trees “are hoarders by nature,” girdling renders them “incapable of taking in nutrients and being a burden to the environment.” Neither of these statements is accurate.

Trees on farmland provide a number of benefits, and the risk to people and property is far lower compared to residential areas.

While the information in this article is somewhat Relevant to homeowners, it does wander into agricultural advice. We’re advised if we have “a danger tree or one that is resting on arable farmland with crops on it, it’s strongly advised that you chop it down and not girdle it. You don’t want an unpredictable girdled tree falling on your harvest, house, or worse — on someone — out of nowhere.”

At this point it’s worth noting that deliberately killing a tree by girdling also opens the property owner up to legal action should the tree fall and damage property or injure someone. This alone should be enough to dissuade property owners from taking advice from this article. And given the number of years it can take for a girdled tree to die (and eventually fall), is this really a useful process if you need to have a tree removed for some reason?

Finally, what is the Purpose of this article? It’s hard to know exactly why the author promotes girdling, and the language she uses in describing tree care is odd. Statements such as “sometimes circumstances call for trees to be put down and killed” and “trees need to be put down for all kinds of reasons” seem to equate trees with stray animals or dangerous wildlife. It creates an antagonistic situation where none exists.

Tree management, especially when it come to discussions about removal, needs to involve a certified arborist who can assess potential risks associated with leaving, as well as removing, any tree.

Shoveling the Artificial CRAP: Navigating Gardening Un-Intelligence in the age of AI

Like it or not, the use of AI (Artificial Intelligence) has become a part of our daily lives. While you might not use AI directly (or you don’t know that you do) it is now a common part of society, especially in the online world. Many people, sites, can companies use it to create content. It is part of the “smart” gadgets that we use at home. Map software (like Google Maps), search engines, ride share apps, and even the spam filter on your email all use AI. You’re even more likely to encounter AI on social media and even standard media these days, with it being used to write articles and text, create ads, and images.

We know that there’s no getting around it these days. You’ve probably heard stories about how AI provides incorrect information, steals content, or might help the robots overthrow humanity today. While it seems to be the wild, wild west, there are a few (voluntary) safeguards in place now to prevent the overthrow of humanity (I hope).  Where the real damage is right now is the use of AI to mislead people outright. There’s also some danger from just lazy use of AI where whoever is using it to create content just copies and pastes it verbatim without checking what it actually says.

Gardening misinformation on the internet is nothing new. Gardening misinformation before the internet is nothing new either. But the risk that AI poses is the amplification and multiplication of that information. It is now easier than ever for someone to create online content at the click of a button. And the way that AI works is it scours the internet for existing information to learn how to respond. This new(ish) generation of AI is generative, meaning that it can actually put together information to form something new. Previously, if you did an internet search you would just get a list of websites to read for information. Now AI can use those sites as source material and write the information in a new way – however you prompt it to do. Search engines like Microsoft’s Bing (the much-loathed replacement for the archaic Internet “Exploder”) now have AI built in as a feature. AI is only as smart as what it can learn on the internet, and we all know that while there is good information on the web it is also full of a lot of manure.

Identifying Artificial Gardening Information

First, how can you tell if it is AI generated?  At first glance you might not be able to tell. It is just like any writing. There are tools you can use to try to figure it out, but you’ll often find that writing from AI doesn’t have personality. It is often very dry. You can tell it to add humor or any other style to its writing, but it often misses the mark. When I asked ChatGPT (one of the common AI platforms) to add humor to something it sounded like I was trying to be cutesy, like an employee at the famous park in the swamps of Orlando run by a mouse and not my usual wit, sarcasm, and cynicism. AI often fails to see context and answers are often very black and white. Which doesn’t work in dynamic systems like gardening and the environment. AI therefore sticks a lot with generalities and doesn’t often provide a lot of specific information unless you ask for it.

As an example, I prompted ChatGPT to write “three sentences about seed starting”. Here’s what it spit out:

1.Starting seeds is a crucial and exciting step in the gardening journey, allowing individuals to cultivate a diverse range of plants from the very beginning.
To initiate successful seed germination, it's essential to provide the right conditions, including proper soil moisture, adequate light, and appropriate temperatures tailored to the specific needs of each plant variety.
Patience is key when starting seeds, as the process requires careful monitoring and nurturing until the seedlings are strong and ready for transplantation into the garden or larger containers.

Nothing alarming there, but it is pretty dry and isn’t very informative. It isn’t what I would write. Now, I prompted it to rewrite those sentences, but to add “humor and wit”. This is what it vomited out:

Embarking on the seed-starting adventure is like launching a tiny plant spaceship into the garden galaxy – a small step for seeds, a giant leap for your green ambitions!
Think of starting seeds as playing matchmaker for your plants, introducing them to the perfect conditions for a successful germination romance – a cozy soil bed, a flirtation with sunlight, and a temperature that says, "I'm hot for you, seedlings!"
Growing plants from seeds is a bit like raising the green equivalent of toddlers – they demand attention, throw tantrums if the conditions aren't just right, and you'll find yourself wondering if they've developed personalities before you know it!

Vomit, indeed. Though still nothing too alarming. Definitely too cute and not enough snark.

Where AI generated text falls short is that it incorporates some of that incorrect manure from the web in answers. It doesn’t know that information on the web is incorrect. A few times it told me to put rocks in the bottom of pots for drainage (something we’ve fiercely disproven time and time again).

It told me to practice companion planting (another fallacy we’ve taken on) but it never gave me a lot of details about how to do it.

I did ask it directly about biodynamic gardening, which is the pinnacle of garden misinformation. It gave an amazingly nuanced and diplomatic response, which is much closer to what I’d actually say and much nicer than what GP founder Dr. Linda Chalker-Scott would say. (Don’t tell her I said that).

“Biodynamic gardening is a holistic approach that considers the interconnectedness of plants, animals, and the environment. While some gardeners find it beneficial for promoting sustainability and soil health, its importance depends on individual preferences and beliefs. Biodynamic practices often involve using lunar cycles and special preparations. If you value a holistic and spiritual approach to gardening, incorporating biodynamic principles might align with your preferences. However, it's not essential for every gardener, and many successful gardens thrive with conventional organic practices.”

So, nothing too earth shattering in text, but where I think the real risk lies is in AI generated images and videos. It is easier than ever to create images of things that aren’t possible or incorrect and pass them off as real. People often do this to drive traffic – by making wild claims that people must check out or by “rage baiting” people who just have to respond to tell people how wrong something is (it still drives engagement and earns money). 

Fake images are nothing new in the gardening world. I can’t tell you how many ads I’ve seen for magical rainbow-colored rose seeds, trees that grow 10 kinds of fruits, and more all before the advent of AI. But now it is easier than ever to create those images at the click of a button.

For an example, I turned to DALL-E, which is a common AI Image generator. I tried to think of things that wouldn’t be possible. My first prompt was “monarch butterfly on a snow-covered flower”. Something that isn’t possible, but that someone might create to make a social media post about something amazing or miraculous that people have to see to believe.

The results look realistic(is) enough, though improbable. But you’d have to know that to not believe it.

Image generated using DALL-E with prompt: monarch butterfly on a snow covered flower

The second test, not so much: “realistic looking tree that has 15 different types of fruits and veggies growing on it”. I had to add the “realistic” because the first results were cartoon-y. It didn’t help much. So, I guess my magical 15 fruit and veggie tree won’t be coming to an online scam shop any time soon.

Image generated using DALL-E with prompt: realistic looking tree that has 15 different types of fruits and veggies growing on it

So, I moved on and created “a grape vine covered with scary looking bugs”.

Image generated with DALL-E with prompt: a grape vine covered with scary looking bugs

At first glance, the result can look terrifying. But if you inspect it closely, you’ll see that those bugs have all kinds of legs coming from all over their bodies. Scary, yes, but realistic – no. But could someone do something like this to scare people about an invading insect? Absolutely!

Cutting through the Artificial CRAP

GP Founder Dr. Linda C-S has written about using the CRAP test to identify if a source of information is trustworthy. She used it to talk about Jerry Baker, the self-appointed “America’s Master Gardener” who peddled misinformation and garden snake-oil for decades through books and tv shows to earn big bucks. The same principles can be applied now to digital content created by AI to help figure out if the information is reliable. Here are the steps:

C = credibility. What are the credentials of the person or organization presenting the information? Are they actual experts? Or is it a random account that doesn’t have ties to a credible source? Does the source have academic training, or even practical knowledge?

R = relevant. Is the information relevant for home gardeners? Or does it try to use information other than home gardening, like production agriculture, to answer the questions. For AI, especially images, I could also say that R= realistic. Is it something that could actually be true, or is it a monarch butterfly covered in snow?

A = accuracy. This could lend itself to the realistic assertion, but I see this as more in accuracy of the source of information. Does it site sources, like journal articles, extension publications, USDA reports, etc.? And does the information follow along with trusted information from other sources?

P = purpose. Why is someone presenting this information? In the Jerry Baker example, he was raking in money with books, TV shows, and product promotions. But what benefit does someone get from posting incorrect info on the web? Also, money. Whether you give them a dime, most social media sites and websites generate income by the number of clicks or viewers they have. How do you think people get rich and famous from TikTok? People aren’t paying them to watch them, but they generate income from engagement and interaction. So, creating content that is fanciful to get people to check it out, or even wrong for people to interact with it to rail against it, creates income.

Is all AI bad?

Not necessarily. I mean, the technology is applied in so many ways to solve so many problems. Sure, there is a risk and people do misuse it. But AI can be a powerful and useful tool when used appropriately, when information is checked, and when it isn’t copied and pasted directly. For example. Over most of 2023 I wrote a series of GP articles about plant diseases. No, I didn’t have AI write the article. That would have been wrong. But I did ask my friend ChatGPT to create lists of common diseases for each type of disease to write about. Instead of me having to dig through social media to see what people were asking about, the platform searched to see what the most common diseases that people talked or asked about were, or which ones were most likely to show up on websites. But I took that list, added to it, subtracted from it, and then wrote the article myself. But the more unethical (and lazy) users of AI just copy what it says verbatim without even reading or editing for accuracy. Or even have automated systems that just crank out AI-generated content with no oversight.

In the end, AI isn’t going away. So as savvy gardeners we just have to know what to look for to “spot the bot”.  And always be ready with a shovel to scoop away the CRAP.

Winter Thoughts in Support for Fallen Leaves

January is here with its resolutions, cold long nights and not that warm days. Winter is a season of rest and survival. The cats and horses have long furry coats, the resident song birds eagerly clean out the feeder every day and the garden beckons. For me Winter is a special season when I can do a lot of fruit tree pruning, especially enjoyed with my daughter. Father-daughter pruning bonding is not to be missed if it’s an option for you. Gardens are tuned to winter as period of rest but the promise of longer days that will initiate the changes that happen in Spring will soon be upon us. In this post I’ll reflect on how plants survive winter and what we can do to help them.

Winter is actually a very dry time of the year in many places and the winter cold that freezes soil leads to dehydration. Plants installed just before winter will not emerge in spring alive w/o moisture in their systems. Mulch is an essential and natural part of winterization for many North American temperate plants. Protecting the root ball of a newly planted perennial is a must do for winter survival. In nature this is accommodated by the deciduous habit of many trees and shrubs, falling leaves are a big part of winterization. In our gardens we can do this with mulch.

Deciduosity

I know deciduosity is not often used but I like to use unusual words so here we go. The deciduous habits of many north American temperate trees enable them and other plants to survive cold, dry, freezing winters. Environmental cues (photoperiod and cooling temperatures) signal trees to drop their leaves (Fadon et al., 2020). Cold temperatures are also required by temperate perennials to invigorate buds and make starch into soluble sugars for strong spring growth. Deciduosity also leads to abundant mulch on the forest (or garden) floor. This protects soil and surface root systems, seeds, perennial herbaceous plants and bulbs and provides an insulating layer under snow, if snow is a thing where you are. When warm temps arrive in Spring the leaves quickly break down as growth under them emerges.

Leaf fall covers the forest floor protecting roots and increasing arthropod diversity in the litter layer.

Solutes

Deciduosity brings certain challenges to woody perennials that donate their canopy to the soil each year. Trees in spring have no photosynthetic organs to supply the energy of growth. That energy has to be stored in the wood and roots as carbohydrates, mostly as starch, at the end of the growing season and before leaf fall. In spring at the end of dormancy when buds grow, these stored carbohydrates convert to soluble sugars and fuel the rebirth of a a new canopy. Having all that stored sugar in cells throughout the plant also reduces the freezing point of water in the cells so that subzero temperatures do not lead to ice crystal formation (and cell death) of the dormant plant.

Seeds

Another way plants survive Winter is by forming seeds. The strategy of annual plants is to “go to sleep” as seeds and “wake up” by germinating. To ensure that seeds don’t germinate too early, they often have inhibitors that need to be washed away by water (Spring thaw), burned by fire (usually summer time), or by scarification (tumbling in the creek etc). Many seeds germinate better after a cold winter than if they were sown without cold chilling. Not all seeds will germinate at the same time as inhibitors delay germination. This ensures that conditions will be right for some of the seeds and thus the species will survive, even thrive in the right place.

Roots

While the above ground part of gardens can be in a dormant state in January, the situation underground is different. Roots respire (break down sugars to get energy for growth) during winter and may grow continuously depending on climate, depth and soil coverage conditions. Roots, just like buds, utilize stored carbohydrates to fuel their growth. If temperatures remain more moderate under the soil they can continue to respire well into winter months. Soils freeze when they lack snow cover or mulch, Reinmann and Templer (2016) propose that roots in frozen soils are less active. Leaf mulches help protect soils from hard freezes.

Snow cover protect soils from freezing and leads to more live roots during spring emergence from dormancy

Am I crazy or What?

I know that a leaf dump on the garden every year is not what many gardeners want to deal with. That is what leaf blowers are for right? Some municipalities even have line items in their budget for disposing of fallen leaves which are some of the most disposed of green waste. Leaves that accumulate on hardscape can be a pollution source accounting for up to 80% of phosphorus pollution in one study (Bratt et al., 2017). It’s best to utilize leaves around perennials and keep them away from streets, gutters and sidewalks.
Trees evolved to drop their leaves on the ground and for them to stay there. Finding ways to accommodate this in gardens will lead to a healthier garden and less waste in landfills. Leaves can be mown on turf areas and the biomass will be incorporated into the turf sward (Nektarios et al., 1999) without loss of turfgrass quality. In gardens they can become part of the surface mulch. If you are really crazy, you can grind them in a shredder to make really high quality micro mulch to be used around certain plants or vegetables (we do this with coast live oak leaves of which we have an abundance in California). Stavi, (2020) encourages us to think of fallen leaves as a resource not a waste product. Your garden will benefit.

For more information on leaves please see the other blogs at this site:

References

A. R. Bratt, J.C. Finlay, S. E. Hobbie, B. D. Janke, A. C. Worm, and K.L. Kemmitt 2017. Contribution of Leaf Litter to Nutrient Export during Winter Months in an Urban Residential Watershed. Environ. Sci. & Technol. 6: 3138-3147
https://pubmed.ncbi.nlm.nih.gov/28215078/

Fadon, E. E. Fernandez, H. Behn, and E. Luedeling. 2020. A conceptual Framework for Winter Dormancy in Deciduous trees. Agronomy 10(2), 241; https://doi.org/10.3390/agronomy10020241

P. Nektarios, A.M. Petrovic and D. Sender 1999. Tree Leaf Deposition Effects on Kentucky Bluegrass (Poa pratenses L.), J. of Turfgrass Man., 3:(1) 69-74. DOI: 10.1300/J099v03n01_06

Reinmann AB, Templer PH. 2016. Reduced winter snowpack and greater soil frost reduce live root biomass and stimulate radial growth and stem respiration of red maple (Acer rubrum) trees in a mixed-hardwood forest. Ecosystems. 19:129- 141.
https://www.jstor.org/stable/48719251

Stavi, I. 2020. On-Site Use of Plant Litter and Yard Waste as Mulch in Gardening and Landscaping Systems. Sustainability 12(18), 7521; https://doi.org/10.3390/su12187521

The warmest year on record ends–will 2024 be hotter?

This year is almost certain to be the warmest on record for the earth as a whole, although there are still a few days in December that could slightly affect the final numbers. As we close out 2023 I want to spend a few minutes reviewing the weather and climate of the past year, both the average conditions and some of the extremes we saw. While this is skewed towards the United States, I did include some events happening in other parts of the world for our non-US readers. I will also take a peek at what is likely to happen in 2024.

Great Sand Dunes National Park and Preserve, Commons Wikimedia.

What were the average climate conditions in 2023?

Since the year is not quite over I can’t provide a final average for temperature or precipitation for the complete 365 days, but there are some websites that allow me to look at all but the last few days. The images below are from the High Plains Regional Climate Center for January 1 through December 27. They show the temperature departure from normal and the percent of normal precipitation for the continental United States. (You can see the global temperature statistics for January through November 2023 at the National Centers for Environmental Information.) In most parts of the U.S. the temperature was warmer than the 1991-2020 normal; the exception was the western mountains, where temperatures were colder than normal. Keep in mind that the normal period being used for comparison (1991-2020) was a period that was quite a bit warmer than the long-term temperature average in the United States, so this map underestimates how warm this year was compared to most of the 20th century.

Precipitation was more variable than temperature, as it usually is. The driest areas this year were in the southwestern Gulf of Mexico states, particularly Louisiana and Texas, and in the Pacific Northwest.  It’s not surprising that these were also areas with significant droughts, including a lot of the Corn Belt which also saw very dry conditions during the growing season. By comparison, California and New England experienced multiple storms bringing significant rain to those areas, including Tropical Storm Hilary (the first tropical storm to hit California in 84 years) in mid-August. In the Southeast, Hurricane Idalia did almost $5 billion in damage in late August from heavy wind and rain, half of that in Georgia alone. But that did not stop a flash drought from developing there in fall with the almost complete cessation of rainfall for up to 60 days.

What extremes did we see in 2023?

The averages show the overall conditions that occurred this year but don’t begin to capture the extremes in temperature and precipitation that occurred. In the United States alone there have been 25 billion-dollar weather disasters so far this year, including the tropical systems mentioned before along with numerous rounds of severe weather across the country and the devastating firestorm in Maui in August. In other parts of the world, many regions experienced their warmest September-November period since records began in 1880. Significant heat waves occurred in Texas and Mexico as well as Europe, Chile, and Canada, where widespread forest fires that flared up blanketed Canada and many parts of the eastern United States with poor air quality and low visibility in the summer.

Percentage of continental US covered by drought status, ranging from abnormally dry (D0) to exceptional drought (D4) from 2019 to 2023. Source: US National Drought Monitor.

Floods and droughts occurred around the world this year. The Mississippi River dropped to record-low water levels for the second year in a row due to the drought in the Midwest. On the other extreme, notable flood events occurred around the world, include floods in Ghana, the Horn of Africa, Pakistan, Bangladesh, and Chile. Storm Daniel brought unprecedented rain to Libya, breaking dams and causing tremendous damage in September. Nine separate atmospheric river events caused tremendous flooding in California early in the year, significantly reducing drought conditions there and contributing to the reduction in drought area in the United States in the first half of 2023.

While El Niño usually means that the Atlantic tropical season is quiet, this year was unusually active with 20 tropical storms and hurricanes. This is in spite of the presence of a jet stream aloft due to El Niño that usually keeps storms from developing. Most of those storms stayed out to sea, so impacts on the United States were limited (except for Idalia and Hilary out west). In other countries, Hurricane Otis hit western Mexico near Acapulco in October, bringing catastrophic damage to an area that almost never gets hits by tropical storms. Cyclone Lola devastated the northern part of Vanuatu in late October as well.

Monthly global temperature compared with the average for the 20th century. Source: New York Times (link below).

The global temperature will set a new record for warmth in 2023

The New York Times provided a sobering look at monthly temperatures for each month going back to 1850 (above). It shows that 2023 had several months that were the warmest on record for those months, due to the expansive area of warm ocean water associated with El Niño in the Eastern Pacific Ocean along with record-setting sea surface temperatures in the Atlantic that contributed to a very active tropical season in spite of being an El Niño year. The impacts of this warmth are being seen in dropping sea ice coverage, more and stronger heat waves, and increases in wildfires in forested areas. Some people argue that the warming trend appears to be accelerating in recent years, a concern that urges us to consider how we can reduce greenhouse gas emissions and slow down the increasing temperature trend.

What do we know about 2024 so far?

The current El Niño is expected to continue through the next few months before it weakens and turns back to neutral conditions around the April-June period. A La Niña could occur later in 2024, which means that next year’s winter could be warm and dry in southern parts of the Northern Hemisphere and colder and wetter along the northern border of the US and up into Canada. Pending on how long the El Niño lasts, the warm ocean temperatures could contribute to another record-setting warm year in 2024 although it’s too early to be sure. It also depends on shorter-term weather events like more frequent occurrence of cold weather due to a shift in the weather pattern in January to more variable conditions later this winter, as many forecasting models think is likely. Meanwhile, neutral conditions or La Niña conditions later in the year could mean that Atlantic tropical activity increases to an even more active level than last year.

Witchhazel in winter, Si Griffiths, Commons Wikimedia.

Thank you, gardeners, for another great year!

Most of the United States as well as the rest of the world experienced a warmer climate again in 2023, so gardeners will continue to need to choose plants that are appropriate for their warming climate zones. Extreme conditions, including devastation by individual storms as well as natural climate variability, will continue to affect home gardens through water stress caused by drought and extreme heat as well as damage caused by floods, high winds, and freezing temperatures. Building a resilient garden that can withstand these extremes will allow your garden to thrive through whatever conditions the atmosphere throws at it.

I want to end this year by thanking you all again for your loyal readership and your thoughtful questions and comments on many topics. I encourage you to share your 2023 garden challenges (weather or otherwise) in the comments along with your plans for how you plan to address them in 2024 and beyond. I look forward to reading them! We will see you again in the New Year.

Some lists of top weather and climate events for 2023 (mostly videos):

Weather Nation: Looking Back at the Top 10 Weather Events of 2023

Pattrn: 2023: Year of Extremes

NBC News: The biggest climate stories of 2023

Climate.gov: Climate Highlights of 2023

Atmos Earth: Your 2023 Climate Wins, Wrapped

Edit this at Structured Data on Commons
Frost in tree shadows, Oswald Bertram , Commons Wikimedia

Plant Disease Primer Part 5: Malicious Misfits

Over the last several months, I’ve covered plant disease basics and discussed plant diseases caused by fungi, bacteria, and viruses. In this fifth and final installment, I’m going to talk about diseases caused by anything but those three different agents. There are a few diseases caused by pathogens that fall outside of those well-known classifications. This list is by no means exhaustive, but it is a good start to show you just what is out there. Where applicable, I’ll be discussing signs and symptoms of the disease, potential control or prevention efforts, and dive a little deeper into describing the actual causal agent. 

First and foremost, some of the diseases I’m sharing might have already been covered in one of my previous installments. The reason for this is that for simplicity’s sake we often lump diseases caused by these “different” pathogens in with a causal agent that they’re similar or related to or evolved from.  It makes describing these things simpler to the general public. But in this chapter, it is my hope to describe and explore just how these things are different as a lesson in how marvelous, interesting, and varied the world is around us.

Phantom Phytoplasmas

Phytoplasmas are single-celled organisms often lumped in with bacteria, seeing as they are actually descended from bacteria. However, phytoplasmas have lost the cell wall that gives bacteria their shape. Phytoplasmas can therefore change shape in response to their environment and to fit in their surroundings better than bacteria which retain shapes like spherical (cocci), rod (bacilli), and spiral (spirilla).

Since they don’t have the protection of a cell wall, phytoplasmas cannot live outside of a host organism and are considered obligate symbiotes. In the case of a plant parasite, it is either the phloem cells of a plant or the gut of an insect vector. Bacteria, on the other hand, are free-living and can exist in the environment and can move between hosts without the aid of a vector insect.

The best known phytoplasma plant diseases are the yellows, with Aster Yellows being the best known. Yellows diseases get their names because plants or plant parts often turn yellow. They become stunted and can develop mis-formed or misshapen parts. Witches brooming, where many twigs, branches, or flowers develop from one point (which can look like a broom) is common. In aster yellows, misshapen and discolored flowers are common. It affects over 300 species, but coneflower, asters, zinnia, and marigolds are common sufferers. In Ash Yellows, ash trees develop unusual leaf growths and witches’ brooms throughout the tree.

Unusual floral growth as a result of aster yellows Source: Douglas/Sarpy Extension – Nebraska

Phytoplasmas require an insect vector, and in the case of yellows, like Aster Yellows, the culprit is a tiny leaf hopper. For Ash Yellows, spittlebugs may also be carriers in addition to leaf hoppers. Since there isn’t a treatment, infection by yellows phytoplasmas can be permanently effective or fatal. The stunting and yellowing will eventually cause a decline in tree health. For herbaceous perennials suffering from Aster Yellows there is no way to revert back to normal blooms. The only way to reduce the likelihood of spread to other plants is removal of whole plants and it can often be too-little-too-late as leafhoppers spread quickly from plant to plant and infection in other plants often occurs prior to noticeable symptoms in nearby origin plants.

Ash tree exhibiting overall decline and witches brooming from Ash Yellows. Source: Missouri Botanical Garden

Vicious Viroids

In part 4 of this series, we discussed plant viruses and how devastating they are to plants. Viroids are also very destructive disease-causing agents and, like viruses, cannot be cured. Viroids are non-living agents, just like viruses, and are even simpler. Where viruses are genetic material (DNA or RNA) surrounded by a protein coat, viroids are just simple strands of pathogenic RNA without a coat. These circular, single-stranded RNA molecules do not encode any proteins and rely on the host cells for replication.

Viroid symptoms include stunting, misshapen growth, leaf abnormalities, and reduced yield. It is possible for some plants to be asymptomatic while being infected and providing a source of viroids to infect other nearby plants.

Viroids can spread to plants in similar ways to viruses, through transmission on dirty tools, propagation from infected plant materials, on seeds, through touch. There is some evidence that viroids can spread through insect vectors like aphids, which is not common for viral diseases. Prevention relies on good sanitation like cleaning tools, planting disease-free and certified cuttings and seeds, and quarantine of new plants that could be infected.

Common viroid diseases include:

Potato Spindle Tuber Disease (PSTVd)

Common Symptoms: stunted growth, deformed potato tubers, yield reduction

Deformed potato tubers with PSTVd. Source: Wikimedia Commons

Chrysanthemum Stunt Viroid (CSVd)

Common Symptoms: stunting, spotted leaves, poor rooting, flower color change, disruption of photoperiod response for flower initiation. It is one of the biggest threats to the chrysanthemum production industry.

Effects of CSVd on florist chrysanthemum. Source: invasive.org

Oafish Oomycetes

While many still lump oomycetes in with fungi, many scientists consider them to be a distinct group because they have a number of differences. One common name for this group is “water mold” because of their preference for wet environments and their mold-like appearance. While they do absorb nutrients and produce mycelia like fungi, there are differences in their composition, genetics, and reproduction. The biggest difference is the production of oospores, which are thick-walled reproductive spores that can rest, or hibernate, for extended periods of time in unfavorable conditions and “germinate” when conditions are favorable for the organism to grow and reproduce. Another difference is the composition of its cell walls. Fungi cell walls are composed of chitin, which is the same chemical that gives hardness to the exoskeleton of insects. Oomycete cell walls are composed of cellulose and beta glucans (polysaccharides that make soluble fibers).

While late blight of potatoes Phytophthora infestans is often called a fungus (and I discussed it in the fungus installment), it is technically an oomycete. The same with downy mildews of various species (Plasmopara) and blights caused by Pythium spp.. One of the more devastating oomycete diseases is Sudden Oak Death Phytophthora ramorum, which as it sounds, is responsible for the sudden death of plants. But many are now calling it Ramorum blight because it effects way more plants than just oak (Rhododendron, Viburnum, Camellia, Azalea, blueberries, Douglas fir, lilacs, and mountain laurel to name a few). Early symptoms of Sudden Oak Death include foliage dieback, leaf discoloration and water-soaked lesions, shoot and twig dieback. As the disease progresses, trees develop cankers that ooze or bleed dark colored sap and eventually decline and die. There is no treatment or cure for sudden oak death and prevention relies on good sanitation and abiding by quarantine regulations.

Oozing oak canker from Ramorum Blight/Sudden Oak Death. Source: Ohio State University Extension
Water soaked lesion on Rhododendron caused by Ramorum Blight. Source: UMD Extension

Wrapping it up

Just like diseases caused by the familiar fungi, bacteria, and viruses, these plant diseases can be devastating and difficult to prevent or manage. As always, an ounce of prevention is worth a pound of cure (which is really true when there isn’t a cure). The best way to deal with these diseases, as with any disease, it to practice integrated pest management with good sanitation, procuring plants from trusted sources, and being vigilant for signs of disease so that infected plants can be removed quickly to reduce the chance of spread.

Knowing some of the common diseases and their signs and symptoms is key in early detection and decision making. Hopefully, some of the info I’ve shared in this series can help you keep an eye out for diseases. As always, when in doubt contact your local extension office for help with diagnosis, verification, and to discuss possible treatment or prevention options.

Sources

Underrated Beneficial Arthropods Part 1: Pollinators

The world of beneficial arthropods (insects and their relatives) far exceeds some of the common critters that we often associate with this category. Many of them perform vital functions in our own yards, gardens, and ecosystems all over the world. A very small sliver of all arthropods are considered pests of any kind though there are certainly some pretty devastating pests in this category. Most of these other organisms are either providing benefits or maintaining important ecosystem functions. They are often overlooked, as some of the more charismatic ones (like butterflies, bees, mantids, and lady beetles) take most of the spotlight. These other not-so-glamorous beneficial arthropods are just as important as the more famous ones, and often perform many tasks that go unseen and underappreciated.

I wanted to talk about each group of common beneficial arthropods (Pollinators, Natural Enemies, and Nutrient Cyclers), but as I was writing, I admittedly got a bit carried away. So in order to prevent this blog post from being extremely long, I decided to split this into 3 parts. Stay tuned for the next installments in my spring and summer GP blog posts. In the meantime let’s dig into some under-appreciated pollinators.

Underrated Pollinators

Goldenrod Soldier Beetle ( Chauliognathus pensylvanicus) feeding on pollen. Photo: Abiya Saeed

Ah yes, pollinators! Many people consider this their favorite category of beneficials (because very few things are as striking or charismatic as a bee or butterfly sipping nectar from a flower). This is also one of the first groups that come to mind when people think about beneficials in general. The classic image of a monarch butterfly or a honey bee on a flower is often associated as the representative image of this group. That being said, honey bees are just one example of the over 20,000 bee species that are found worldwide. But this group far exceeds butterflies and bees- and some of the less charismatic critters often get an unfair reputation, or just a lack of awareness about what they do. For a variety of reasons, including their anatomy, efficiency, abundance, and direct economic impact, bees are considered the most important pollinators. But many other animals are also great pollinators, some of which are the sole pollinators of certain plant species. In fact most arthropods that visit flowers have the potential to move pollen around, making them possible pollinators. But since I don’t have time to write a whole book’s worth of information into this blog post, I will focus on a few of the larger groups of these less famous pollinators. If you are interested in doing a deeper dive into the world of beneficial arthropods, I will include some resources at the end.

Flies

Flies (order: Diptera) are a huge group of insects, with over 110,000 described species in 150 different families. This group spans a wide variety of very well-known groups like house flies [Muscoidea] and mosquitoes [Culicidae], to not so well-known groups like stalk-eyed flies [Diopsidae] and long-legged flies [Dolichopodidae]. They encompass nearly all biomes and have a broad range of functional groups including predators, parasites, decomposers, and pollinators. In fact, some studies consider flies to be the second most important flower visitors after bees.

Green Bottle Fly (Lucilia sp.) on a Prickly Pear (Opuntia sp.) Photo: Abiya Saeed

According to a literature review by Cook et al. (2020): flies from 86 different families have been reported to visit over 1100 plant species. These flower-visiting fly species also include some that have important potential for crop pollination and have been recorded to visit many horticultural crops. This includes commonly known pollinating flies, e.g., bee flies [Bombyliidae], hoverflies [Syrphidae], and flower flies [Anthomyiidae]. But some flies we don’t usually associate with this role such as blow flies [Calliphoridae], flesh flies [Sarcophagidae], and horse flies [Tabanidae], and some that many may never have heard of such as nose flies [Rhiniidae] and march flies [Bibionidae], are included. Some species are even considered to have potential as managed pollinators, a role that we most commonly associate with honey bees and some other bee species.

Fun fact: only female mosquitoes need a blood meal in order to reproduce, whereas male mosquitoes feed on nectar, making mosquitoes pollinators! In fact, mosquitoes have been studied as pollinators of orchids, like the Blunt-leaf Orchid, Platanthera obtusata, among other plants.

Moths

We all know butterflies and moths (order: Lepidoptera) are well-documented flower visitors and important pollinators. Despite this, butterflies often get most of the limelight and attention from the general public while many moths often end up being overlooked. Even though moths make up nearly 90% of the over 160,000 described Lepidoptera species, there is a disproportionate amount of research that has historically been conducted on them when compared with butterflies. It has also been demonstrated that moths are the most important nocturnal pollinators, which is fairly intuitive when you think about their nocturnal foraging biology. A study conducted in Sussex by Anderson et al. (2023) demonstrated that moths had higher pollen deposition rates on bramble species indicating that they are more efficient pollinators of brambles than their diurnal counterparts. This has implications for the importance of moths in other plant groups as well, as new research continues to be conducted.

Clearwing Moth (Hemaris sp.) Photo: Steven Katovich, Bugwood.org

Fun fact: My favorite story to tell about plant-pollinator interactions is of Darwin’s Star Orchid (Angraecum sesquipedale). Charles Darwin was sent a sample of this striking orchid from Madagascar in 1862. Upon examination he found that the nectar tubes were 30 cm (~12 inches) deep! Based on this, Darwin hypothesized that it would take something that has a really long tongue to be able to access that nectar but nobody believed there could be such an insect and he was ridiculed by other scientists. In 1867 Alfred Russel Wallace examined the orchid and predicted there must be a moth in Madagascar that can reach this nectar in order to pollinate the plant. But no moth had ever been discovered which had a proboscis (a coiled and elongated mouthpart of butterflies and moths that is used to suck up nectar) that long. It wasn’t until decades later in 1903 a moth meeting these specifications was discovered. Aptly named in honor of the scientist who predicted its existence, Wallace’s sphinx moth (Xanthopan praedicta) also known as the ‘predicted moth’ has the longest proboscis (sometimes referred to as a tongue, though it is not quite a tongue) of any insect. This just demonstrates just how amazing plant and insect interactions and coevolutionary relationships truly are!

The Star Orchid alongside the ‘Predicted Moth’! Photographed by Robert Clark for Evolution

Wasps

Wasps are in the order Hymenoptera, shared with bees and ants. They often have a bad reputation due to a few particularly aggressive social wasp species that most of us have likely had an unfortunate interaction with. That being said, the wasp group is extremely large, diverse, and species-rich. With over 103,000 described species in the category (and scientist estimates stating that the actual number could be in the millions), wasps span a lot of crucial categories of beneficials including parasitoids, predators, and pollinators.

Many wasp species resemble bees and it can be easy to confuse them for each other when they are visiting flowers. The major differences between the two are the thread-like waist that wasps have, and their less-hairy sometimes shiny, overall appearance. In addition most wasp species are primarily carnivorous, feeding on insects and other sources of meat for their protein needs, making them a great resource for deterring common garden pests (stay tuned for more on that in the next part of the Underrated Beneficials series). Even though most of these wasps are carnivorous, they supplement their diet with sugars which they often get from nectar or honeydew produced by sap-sucking insects, e.g., aphids, and occasionally fruit.

White-Striped Black Mason Wasps ( Pseudodynerus quadisectus ) mating on a Goldenrod (Solidago sp.) Photo: Abiya Saeed

There are also some species of vegetarian wasps. A common example of these are the 300 species of pollen wasps (Masarinae) which, like bees, are nectar and pollen feeders (and many of which are important pollinators of certain plant species, such as the Water Leaf, Hydrophyllaceae).  Due to the fact that they have fewer hairs, wasps aren’t as efficient at pollination as bees, however, they can still be very important pollinators. Like bees, some wasps are generalist pollinators, visiting a wide-array of flowering plants, while others are specialists where a group of wasps relies on a group of flowering plants and vice versa. In these cases the pollination of those plants are reliant on these wasps.

Studies have shown that some generalist wasp species are better than some generalist bees at pollinating specific flowers. A 2018 study by Thomson examining the pollinators of the California Bee Plant (Scrophularia californica) showed that the western yellowjacket (Vespula pensylvanica) was a more effective pollinator in terms of pollen deposition when compared with honey bees and bumble bees. Some species of African pineapple lilies (Eucomis autumnalis and Eucomis comosa) and African milkweed (Pachycarpus grandifloras) are primarily pollinated by spider-hunting wasps (Pompilidae) in the genus Hemipepsis. Additionally over 100 species of orchids are reliant on wasps for pollination some of which use sexual mimicry to attract male wasps to flowers! And I would be remiss if I didn’t mention fig wasps (family: Agaonidae), who have been coevolving with their host plant for tens of millions of years. The fig (Ficus sp.) ‘fruit’ is actually an inflorescence (an enlarged stem with lots of little flowers inside). In order to pollinate those flowers, the female fig wasp squeezes into a small opening and moves around, laying her eggs in the ovaries of these flowers thereby spreading pollen from the fig that she was born in. The male offspring will remain in the fig while the new batch of females will emerge and look for a new fig in which to lay their eggs (see resources for more on this fascinating mutualism).

For more information on wasps as pollinators, check out the awesome article by Hooks and Espíndola, linked in the resources!

Fun fact: Sexual mimicry is used by some flowers to attract their pollinators. In these situations, the flowers use a combination of visual and chemical cues including mimicking the scent of specific female wasps and bees to attract males. An example of this can be seen in the wasp family Thynnidae, where male winged-wasps are searching for wingless females to mate with. When they stumble across the warty hammer orchid (Drakaea livida) they confuse it with a female thynnid wasp, because of the similar shape and scent, and try to mate with it. This process results in the pollen being deposited on the abdomen of the male wasp. As he goes to the next orchid in order to mate, the pollen is deposited on the new flower, resulting in pollination.

Beetles

Beetles (order: Coleoptera) are considered to be the largest insect order with over 350,000 described species, which makes up 25% of all known animal species on Earth! Like some of the previously mentioned orders, they include a large diversity of functional groups, including pollinators. Due to the incredible size of this order, they are considered to be the largest and most diverse group of pollinators with an estimated 77,000 flower-visiting species. In fact, based on pollen-covered specimens preserved in amber from 100 million years ago which is 30 million years earlier than the first records of bee pollinators, beetles are considered to be the first recorded insect pollinators! Even now they are considered to be vital pollinators of some of the most primitive flowering plant groups that still exist today, such as Magnolias.

Flower Longhorn Beetle (Analeptura lineola) on a Multiflora Rose (Rosa multiflora). Photo: Ansel Oommen, Bugwood.org

Although some beetles are specialists of certain plant groups ,especially those that are descendants of some of the earliest flowering plant groups including water lilies and magnolias, most are generalist pollinators and will visit a wide array of flowering plants. Some scientists even estimate that flower-visiting beetle species will visit 90% of all 350,000 flowering plant species. Beetle pollination is also essential for certain agricultural crops including Paw Paw (Asimina sp.) and the Atemoya (Annona x Atemoya).

For more information on the fascinating world of beetle pollination, check out the awesome article by Hooks and Espíndola, linked in the resources!

Fun fact: The process of cross-pollination that depends on beetles is referred to as ‘cantharophily’.

Resources

Cook et al. (2020). The Role of Flies as Pollinators of Horticultural Crops: An Australian Case Study with Worldwide Relevance. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7349676/

Anderson et al. (2023). Marvellous moths! Pollen deposition rate of bramble (Rubus futicosus L. agg.) is greater at night than day. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0281810

Hooks and Espíndola. (2017). Wasps, surprisingly cool pollinators. https://blog.umd.edu/agronomynews/2020/08/31/wasps-surprisingly-cool-pollinators/

The story of the fig and its wasp. https://www.esa.org/esablog/2011/05/20/the-story-of-the-fig-and-its-wasp/

Hooks and Espíndola. (2017). Beetles and Pollination.
https://blog.umd.edu/agronomynews/2020/06/29/beetles-and-pollination/

People and Plants

In this late fall edition of People and Plants we’ll take a look at an early American female botanist, Martha Daniell Logan.

Martha Logan’s signature. Courtesy of The South Carolina Historical Society.


She was born in 1704 in St. Thomas Parish, South Carolina, the second child of Robert Daniell and his second wife Martha Wainwright. After her father died in 1718 she inherited his land along the Wando River. In 1719, Martha married George Logan, Jr. and they lived on the Wando River, ten miles from Charleston, where both the Daniell and the Logan families owned extensive property.  Over the next sixteen years, she gave birth to eight children, six surviving to adulthood.  In 1750 the family moved to a plantation near Charleston. Needing to enhance the family income she advertised her services as a teacher but her attention gradually shifted to horticulture. She began her botanical career collecting in the woods near her home.

The title page of the 1757 South Carolina Almanack which contained Martha Logan’s “Gardener’s Kalendar.” Image courtesy of the South Carolina Historical Society, Charleston, S.C.

Martha soon gained the reputation of a skilled gardener and maintained a well-known garden “on the Green, near Trott’s Point in Charles Town.” Gardening became her focus and occupation and she embarked on a career as a “purveyor of botanical goods,” selling seeds and plants from her home. 
In addition to native plants, she dealt in imported specimens. Gardening, especially landscaping with rare plants, had become a favored pastime among wealthy locals and Martha was quick to capitalize on this. An advertisement published in the Gazette on November 12, 1753, announced the availability of “a parcel of very good seeds, flower roots, and fruit stones of several kinds” that were “just imported from London.”

Page of the 1757 South Carolina Almanack print of Martha Logan’s “Gardener’s Kalendar.” Image courtesy of the South Carolina Historical Society, Charleston, S.C.

She exchanged seeds, roots, and plants, like gardeners do, with other botanical enthusiasts including the naturalist John Bartram. His visit in 1760 initiated a three year correspondence and trade of specimens. They swapped lists of available plants and used silk bags to send seeds to each other. They also exchanged lists of plants that each desired from the other’s geographical area. Logan enthusiastically sent Bartram plants from Carolina which “may be New to you” and “be an adision [addition] to yr Collection.” In return, she asked him to send bulbs and double-flowering plants that her London contacts had failed to procure or took too long to send. She shipped and received tubs of cuttings and roots on ships traveling between Charleston and Philadelphia, where Bartram lived. Bartram praised her in a letter to a London friend and wrote, “Mrs. Logan’s garden is her delight and she has a fine one.”

Page of the 1757 South Carolina Almanack print of Martha Logan’s “Gardener’s Kalendar.. Image courtesy of the South Carolina Historical Society, Charleston, S.C.

With the popularity of urban gardening on the rise Martha realized that many people needed help and guidance with their horticultural endeavors. In 1752 her first advice column titled “Gardners Kalander [sic], done by a Lady of this Province, and esteemed a very good one.” appeared in the South Carolina Almanack. Her first publication was so successful she continued to publish her calendar, updating and enlarging it each year.

Page of the 1757 South Carolina Almanack print of Martha Logan’s “Gardener’s Kalendar.” Image courtesy of the South Carolina Historical Society, Charleston, S.C.

Martha continued her business, what we nowadays would call a garden center, for the rest of her life. She even wrote a treatise on gardening at the age of seventy. In 1809 the early Charleston historian David Ramsay described her as “a great florist, and uncommonly fond of a garden,” and claimed she “reduced the knowledge she had acquired by long experience, and observation, to a regular system which . . . to this day regulates the practice of gardens in and around Charleston.”

Page of the 1757 South Carolina Almanack print of Martha Logan’s “Gardener’s Kalendar.” Image courtesy of the South Carolina Historical Society, Charleston, S.C.

Martha died in Charleston on June 28, 1779, and was buried in St. Philip’s Churchyard. She is considered one of the founding gardeners of South Carolina.


Read back through the pages of her 1757 Gardener’s Kalendar shared above. In your opinion, how much of it is still applicable? One bit of her advice that is always appreciated: “What was neglected last month may be successfully done in this.”

5th National Climate Assessment and an Update on the Plant Hardiness Zone Map

This month has been an exciting one for climatologists around the United States with the November 14 release of the Fifth National Climate Assessment (NCA5), a massive project that is undertaken every four years to capture our current understanding of climate change based on recent research. I was a chapter author for the Southeast and spent the last two years working with over 700 authors around the United States to gather and document how the climate is changing and how it is affecting all of us. This week I will explain how NCA5 was put together, what it says about climate, and what gardeners can do to help reduce the future impacts of global warming and other climate changes. But this month was also exciting because USDA just released an updated Plant Hardiness Zone map, just a few weeks after my post in October about how the 2012 map was outdated. I guess they were listening (just kidding!). I will discuss that briefly at the end of this post, too.

Frost on the grass/moss, Timo Newton-Syms, Commons Wikimedia

What is the National Climate Assessment?

The National Climate Assessment (NCA) is a report mandated by Congress to compile the latest scientific findings on how climate is changing so that we can respond to reduce its future impacts. It is published every four years, and the last one (the 4th NCA) was released on the day after Thanksgiving in 2017. While the underlying message has not changed, each assessment focuses on the newest scientific research that has been published since the last assessment was done. The document is divided into chapters so that the authors of each chapter could concentrate on that topic.

NEWS STREAM VI – REFLECTIONS by Taina Litwak as part of the NCA5 art competition (see all entries along with artist statements at https://nca2023.globalchange.gov/art-climate/).

NCA5 starts with a review of the general scientific principles of how the climate is changing. That is followed by seventeen chapters focused on national topics such as agriculture, water, energy, and transportation as well as specific groups that are being especially affected by climate change such as indigenous peoples. Following the national topics, chapters address changes that are happening in ten different regions of the country . These address how we need to reduce future greenhouse gas emissions that are driving the warming of the earth as well as how we can adapt to the changes that are already happening now and may get worse in the future.

How was NCA5 produced?

There is a long process involved in producing a national climate assessment. Teams of scientists from an array of disciplines were chosen as authors for each chapter to write the initial text of the document. To keep the authors on task and within tight word limits, there were lead chapter authors and technical advisors who moderated group meetings where the key messages for our chapter were identified. Initial figures to include in each chapter were drafted by a graphics team or requested from scientific journals. After the first draft was complete it was first reviewed by federal agencies to make sure that their concerns were addressed and then by the public, who provided many additional comments. All of these comments were provided to the chapter authors so they could refine their text and figures for the next draft. In all, the document when through six different reviews and all comments were addressed.

Frost on a borago officinalis flower, Stanzilla, Commons Wikimedia

Where can I read NCA5 and learn more about what it says?

The NCA contains a vast amount of information in its 32 chapters, five appendices, and special topics, so it is hard to summarize. I encourage you to explore the document online to see what it says about your region and special topics of interest like agriculture, land, and ecosystems. A good starting place is the introductory website https://www.globalchange.gov/our-work/fifth-national-climate-assessment, which explains how the report was written and provides links to read the report, attend a webinar on an individual chapter, and see where the figures came from. I also encourage you to explore the excellent interactive atlas developed in conjunction with the report. Many other resources such as podcasts are available, too.

What are some steps that gardeners can take to respond to climate change?

There are two approaches that gardeners (and all of us) need to take to respond to the challenges of a changing climate. We are already dealing with the consequences of trends towards warmer temperatures and more extreme swings in the water cycle such as increases in floods and droughts. Gardeners are adapting to these changes in climate by planting different plants that are better suited to the warmer climate and changing how they manage their gardens using rain gardens, drip irrigation, and other techniques. Adaptation is a key approach that gardeners will continue to need to follow as the climate continues to get warmer and more variable.

In addition all of us, including gardeners, have a responsibility to cut the emissions of additional fossil fuels which are driving most of the warming (mitigation is reducing the inputs to prevent future harm). This will reduce the impacts that our world will have to navigate in the future. Even a small decrease in the emission of greenhouse gases now can prevent the worst outcomes. A prime target for gardeners is the elimination of gasoline-powered equipment like blowers, mowers, and trimmers. These small tools have highly inefficient engines that emit a lot of greenhouse gases as well as air pollutants (and a lot of noise, too). Switching to electric tools and vehicles, composting, adding solar power to houses and businesses, and conserving energy and water (which often uses energy to purify it) through carefully chosen plantings as well as through other methods can also help reduce future warming.

Frosted flower buds, Tony Hisgett, Commons Wikimedia.

What about the new USDA Plant Hardiness Zone map?

I was surprised last week that the USDA had just produced an update to the 2012 map that I discussed last month. In that post, I noted that the 2012 map was already outdated due to the increasing temperatures we have seen in the 21st century. The new 2023 map uses data from 1991-2020, the current 30-year normal period, to identify the current plant hardiness zones for the United States. You can see the new map and zoom to your city at https://planthardiness.ars.usda.gov/. By comparing it to the 2012 map, you will see that more than half the country has increased by half a zone, which correlates to about a 5-degree F increase in the average lowest minimum temperature a location experiences each year. I asked USDA for a map that showed the changes of zone and was provided one by Chris Daly of the PRISM group that put together the 2023 map (below). Areas in tan experienced a half-zone change since the 2012 map. (There are a few areas in the Mountain West where the zones got colder, as shown in green, but these are mostly linked to new datasets that were available for the analysis rather than any changes to the local climate there.)

Science has made it clear that the earth’s climate is changing and that most of the warming we are experiencing is due to burning of fossil fuels. We must learn to adapt to these changes and make sure that all groups can be protected from the worst impacts of the more extreme weather we are likely to experience. But we can also make changes now to reduce those future impacts, and I know gardeners will be part of that solution.

November PDX leaves, Loren Kerns, Commons Wikimedia

Plant Disease Primer- Part 4: Going Viral

Previously in this series I started with some plant disease basics and then covered some common fungal diseases and then bacterial diseases. Now let’s turn our attention to viruses. Just like with fungi and bacteria before, in this installment I’m going to talk about some of the most common viral plant diseases with some suggestions for treatment and prevention. This by no means will be an exhaustive list of diseases (there are so many!), but I hope to cover some of the most common ones that trouble gardeners.

Unlike fungi and bacteria and just like human viruses like the common cold, there typically aren’t treatments that you can use to “cure” or treat a viral infection. Therefore prevention is the only way to limit viral disease spread in plants. Also unlike fungi and bacteria, viruses are not living organisms.  They don’t have cellular “machinery” and are typically a snippet of genetic material (DNA or RNA) encased in a protein coat or similar structure. Since they aren’t living, they don’t reproduce outside of a host organism and don’t typically have the ability to spread themselves around the environment, instead relying on hosts to carry them. For plant viral diseases this usually involves manual movement on humans, tools, or possibly animals or inside of a secondary host organism like an insect’s digestive tract. Aphids are a common vector, as they consume and secrete infected sap. Viruses can often spread through infected seed or vegetative propagules like seed potatoes or cuttings. And since they aren’t living entities and are microscopic there are no signs (visible presence of causal agent) of disease, only symptoms.

Mosaic Viruses

I’m lumping mosaic viruses together because there are lots and lots of them, each affecting a different range of host plants but with similar symptoms. Many viruses affect a specific species or genus of plants while others have a broad host range. Common symptoms include: yellowing, mottling, mosaic patterns on leaves, curling, stunted growth, reduced fruit quality and size, and necrosis.

Tobacco mosaic virus (TMV) is the most persistent and infectious virus and has a very wide host range, including tobacco and other members of the Solanaceae family like tomatoes, potatoes, and peppers, other vegetables, and ornamental plants. The host range is estimated to be up to 350 species.

Tobacco Mosaic Virus (TMV) on Tobacco, Source: UK Extension

TMV is spread through sap and infected seeds. Virus transmission through sap can be a result of physical contact (brushing against plants when moving through a field/garden), dirty tools, aphid feeding, or even from tobacco use. TMV is so pervasive and persistent that many nursery and greenhouse businesses have strict tobacco policies for employees and for employees who do use tobacco there is usually a hand sanitation requirement.

Tomato Mosaic Virus (ToMV) on Tomato, Source: UF IFAS

Other mosaic viruses include Tomato Mosaic Virus (ToMV), Cucumber Mosaic Virus (CMV), Zucchini Yellow Mosaic Virus (ZYMV), Cauliflower Mosaic Virus (CaMV), Squash Mosaic Virus (SqMV), Bean Common Mosaic Virus (BCMV), and Rose Mosaic Virus (RMV).

Zucchini Yellow Mosaic Virus (ZYMV), Source: Wikimedia Commons

Tomato Yellow Leaf Curl Virus (TYLCV)

  • Common symptoms: Yellowing and curling of leaves, stunted growth
  • Host Plants: Tomatoes, Peppers
  • Insect Vectors: Whitefly
Source: LSU AgCenter

Tomato Ringspot Virus (ToRSV)

  • Common symptoms: yellow rings on leaves, mottling, distortion, mosaic, rings on fruits, necrosis
  • Host Plants: Tomatoes, other Solanaceous crops, wide range of others
  • Vector: Nematodes
Source: Wisconsin Pest Bulletin

Potato Virus Y (PVY)

  • Common symptoms: Leaf discoloration, mosaic patterns, tuber deformation
  • Host Plants: Potatoes, Tomatoes, Peppers
  • Insect vector: aphids
Source: University of Maine

Hosta Virus X (HVX)

  • Common Symptoms: irregular yellow or light green streaks, mottling, leaf distortion, feathering pattern (looks like colors painted on by brush), stunting, and reduced vigor
  • Host Plants: Hosta
  • Insect Vectors: None/unknown

Rose Rosette Disease (RRD)

  • Common symptoms: Rapid growth, witches brooming, excessive red coloration (in terminal bracts), deformed leaves, excessive thorns
  • Host Plants: Roses
  • Insect Vectors: Eriophyid mites
Source: NC Extension

Plum Pox Virus (PPV)

  • Symptoms: Leaf distortion, fruit deformities
  • Host Plants: Plum, peach, apricot
  • Insect Vectors: Aphids
Source: USDA APHIS

Control and Prevention

Unfortunately, since there is no treatment for viruses and plants don’t have immune responses that eliminate them like humans and animals do, the only “control” for viruses in the garden is by removal of infected plants. There is no way to “cure” an infected plant, but removal from the landscape or garden can reduce the viral load available to vectors in the garden and can help slow or eliminate the spread to other plants. Since symptoms may not appear right away, it is possible that viruses can spread to multiple plants before detection. 

Since viral infection typically means a death-sentence for the plant, prevention through Integrated Pest Management is of utmost importance.  Here are some common and effective IMP practices that can help reduce the spread of viruses in the garden.

  1. Purchase certified disease-free seeds or plant cuttings. Unfortunately, viruses can spread easily through untested seeds and cuttings so take caution in sharing at places like plant and seed swaps.
  2. Practice good sanitation: remove and destroy infected leaves and plants ASAP
  3. Clean tools regularly: viruses spread through sap transfer, so cleaning and disinfecting tools is a must. Sometimes in high-value or susceptible plants, disinfection should be done between using tools on individual plants, especially pruners. Use a dilute 10% bleach solution, rubbing alcohol, or horticultural sanitizer for best results.
  4. Quarantine new plants: If a plant appears suspicious, keep it potted in an out of the way place until you can determine possible infection. This is especially important for plants from discount retailers, plant swaps, etc but can hold true for plants from any source.
  5. Purchase disease-resistant cultivars when possible.
  6. Control vector insects, especially aphids.
  7. Wash hands before gardening, ESPECIALLY if you are a tobacco user.
  8. Do not use tobacco products while gardening.

Wrapping it up

There are lots of bacterial diseases that can damage or kill plants in our gardens or landscapes. Prevention is key, as treatments only help slow the spread of disease. In the next (and final) installment, we’ll talk about diseases that are caused by things that aren’t fungi, bacteria, or viruses.

Ok–I know something is wrong, but what is it?

Facebook and other social media attempt to help us solve problems.  This group and others seek to inform gardeners and solve problems they are having growing plants.  Looking at queries and posted responses there is so much information missing, leading to wrong and misleading comments in many of these discussions.  I think it is a good idea to reexamine the diagnostic process and how gardeners can solve their own diagnostic questions.

I know there is something wrong with this Ficus but what is it? To diagnose this tree disorder many steps need to be taken to understand the problem

Diagnosis is always the precursor to solving a plant problem. In the world of plant pathology, palliative care (treating symptoms) is often ineffective if the cause of the disorder is unknown. It is amazing how on social media so many cures, fixes, MacGyvers, or treatments are suggested even before a diagnosis is made. The diagnostic process has many components so its good to be familiar with some of the steps in this process.

Identify the plant

All plants have published names and are based on herbarium specimens. The published names of plants are all scientific binomial names. The first name is the genus and second the specific epithet or species.

Host identification comes as the first step in diagnosis. It sounds simple or silly, but knowing the host name is the first step in diagnosis. Find the scientific name of the plant and then specific disorders of that taxa can be sought out in a web search. Common names are misleading and it is critical to associate disorders with the exact plant you have a problem with. If you are diagnosing remotely (as I am often forced to do), knowing the location is the next question as many disorders are regional. For instance we don’t have black knot of plum in southern California while in southern Ontario, Canada and New York state that is a big problem.

Look at the whole organism

So many gardeners only focus on where they see symptoms. A leaf, shoot, or branch with something that does not look right is a good place to start looking, but always consider the entire plant. It is important to see the entire plant and what the distribution of above ground symptoms is. Don’t forget the “whole organism” includes its root system which is often neglected in diagnosis.

Examine the entire plant including its roots for symptoms

Look at all the components of the plant

Symptoms which are plant responses to a disease or disorder often occur on leaves. The problem, however, may be in the roots. Root rots may go undetected until almost the entire root system is decayed; only then do symptoms start to appear on the distal or far portion of the plant. These rapidly or slowly spread until the entire plant is affected. Whenever there is uniform symptomology of the foliage, always check the root system. Symptoms on only a single branch of a perennial may be localized to that branch, so follow the symptomatic branch back to its attachment point to locate any damage or disease along its stem.

Examining stems in the ficus picture above shows clear canker symptoms typical of Botryosphaeria canker in Ficus. The yellowing leaves are a symptom, but not the cause of the disorder.

Look closely

It often helps to use a hand lends to closely observe insects, insect products like webbing, eggs, pupal cases, or frass, or just to validate that there are no insects or their products present. Many many fungi form fungal fruiting bodies in dead stem portions and these look like tiny grains of pepper under a hand lens. A closer view is often helpful in deciding if a problem is localized or system in the plant.

A hand lens can supply 15-25x magnification

Look for symptoms and signs

Symptoms are plant responses to attack from pathogens, insects or abiotic causes such as herbicides, toxic salts, high and low temperatures etc. Symptoms alert the gardener that there is something wrong but may or may not point the way to the cause of the problem. It is also important to look for signs which are parts of the biology causing the problem. Fungal growths, spores, fruiting bodies insects adults and immatures stages of insects and the products they produce and leave behind are all signs. Signs give more direct evidence of the cause of a problem.

Look around

You may not be the only gardener with a plant problem. Look to see if other plants in your garden are similarly affected. If only a single taxa is affected it could possibly be a disease or insect problem. If many different kinds of plants are affected it may be from a non-biological cause–an abiotic disease or environmental disorder. Solving these diagnoses often requires lab work and specific soil or plant sampling

Distortion of new growth is a symptom. it has many causes but the fact that it is occurring on multiple taxa in a single site suggests herbicide toxicity. In this case the culprit is an herbicide called Polaris and the active ingredient is imazapyr.

Seek confirmation

Once you have collected all the the information (symptoms and signs) over the entire plant (including if necessary root symptoms), it is time to put the information to work. Searching on your own, on the internet, is daunting because there is so much misleading information. If you have the scientific name, you can put that in a search engine along with the symptoms and tentative ID of insects or pathogens and then look at all the images that match what you have. Click on the image and check the source of the file. If from an .edu or educational source, it is likely a higher quality of information. Read these first.

Taking samples to a lab or University Extension office is of limited value because they can’t see the entire plant. It’s best to take samples to an expert when you have a good hunch what is going on and you want to confirm it (you should include images of the whole plant if you can). So much money is spent sending random leaf or twig samples to labs and they end up sending information that is misleading or just wrong as far as the diagnosis goes. Thousands of fungi grow on plant surfaces and labs will isolate these, some are pathogens but may not be on your specific plant as pathogens can be quite specific to plants they have a disease relationship with. The lab report comes back with a finding Alternaria spp. This is indeed a pathogen of tomato and many other plants but it is also a very common saprophyte often found growing on dead plant tissues. So lab findings are helpful when they confirm your own suspicions, but often unhelpful when random plant tissues are sent by a gardener that has no idea what is happening. This is true of any lab, university or private. The more information the lab has, the more helpful they can be. And all labs everywhere would prefer to have the entire organism for diagnosis.

Diagnosis is hard. The best diagnosticians are correct (solve the diagnostic problem) about 2/3 of the time. Sometimes diagnosis of a problem can take years. Some diagnoses are never solved. But for most common plant problems you can find answers by intelligently searching the internet and with some help from the “ologists” of University and private diagnostic firms.

This disorder of Lantana camara took over ten years to diagnose. Samples sent to the state agriculture lab were studied for virus and fungal pests. No results came of it. The disorder was finally resolved when flies of the genus Liriomyza spp. were reared from leaves. Lantana Blotch Miner is widely distributed in Southern California only on L. camara.