This bud (removal) is for you: Does early flower removal aid plant establishment in fruiting plants like tomatoes?

In many publications and garden resources you see the suggestion to remove flower buds to improve establishment of new fruit and vegetable plants. This advice is shared for both woody and perennial plants like fruit trees and strawberries and for annuals like tomatoes and peppers. And whenever you see someone stating this as gospel, you see someone else stating that it is false or only anecdotal. So the question is – does research support the advice to remove early plant blossoms to improve vegetative plant growth and establishment? Let’s take a look at some recent, and not so recent, research to see what really happens and understand the process.

The Physiological Process

Prior to my extension career teaching people gardening, I fancied myself a budding (ha ha) plant science researcher. Many of my classes, therefore, were focused on plant physiology and genetics. Not necessarily handy in teaching people the basics of gardening, but pretty damn handy in explaining how plant processes work.

As most upper elementary and middle school students will tell you, plants make their own food in the form of the sugar glucose by using energy from the sun through photosynthesis. That glucose is used in the respiration process to release the energy for the plant to use, transformed into other sugars and compounds for functions around the plant, or turned into starch for long-term storage. Photosynthesis is not an unlimited process and genetics, environment, and other factors play a role in the rate of energy development. So it stands to reason that there are lots of things that have to happen with the finite resources made by the plant.

In plant physiology circles, photosynthesis is called the “source” of plant energy and those uses, such as root, leaf, stem, wood, flower, and fruit production and storage are called “sinks” (sometimes also “pools”). Researchers often discuss these pathways as “source-sink” interactions. Since there are only so many carbohydrates to go around, researchers have long known that when demand is high for growth of certain structures that development of other structures is slowed. If there is a period of rapid root growth, the demand for carbohydrates in the roots increases and the availability for other locations in the plant is decreased. As a result growth in the leaves, stems, or reproductive organs may slow until a supply is restored. But this phenomenon varies by plant species and even cultivar/type, as genetics does play a role in the rate of photosynthesis. Some plants have a higher level of photosynthesis to help offset the sudden upswing of need, and some don’t.

Source: Michael G Ryan, Ram Oren, Richard H Waring, Fruiting and sink competition, Tree Physiology, Volume 38, Issue 9, September 2018, Pages 1261–1266

Think of it like a household budget, but you have a job that only pays you in months that are warm and sunny. You have a set monthly income (the source) and then your housing, utilities, food, and other bills to pay (the sinks). Plus, hopefully you are saving some money for later somehow (another sink). If your bill sinks are greater than your income source, you might dip into your savings a bit, but you don’t want to take it all because you will need most of it in the months when you don’t get paid because it is cold and dreary, or your leaves have fallen off, or your herbaceous bits have died back. As a plant you don’t qualify for credit so the only way to make things work is to cut back in some areas (a sad reality for many on limited incomes). You have to reduce your utility usage, cut back on more expensive foods, find cheaper rent, etc. Similarly, a plant has to reduce the amount of energy used for, say, root growth if it has a rapid leaf growth.

And if you have a kid then the expenses go way up, right? That’s what happens when a plant is just minding its business, enjoying a free and frivolous lifestyle when all of a sudden reproduction comes along. First flower structure development, then fruit development. Plants that have a higher rate of photosynthesis have a higher budget to pull from, so the change may be minimal. But when photosynthesis rates are low, like in newly developing plants with few leaves, unfavorable environments, or genetic limits, the effect can be significant.

So, what about my plant?

The question we always get is, “is it necessary to remove the early blossoms on my ______ plant to help it get established?” For perennials like fruit trees, that would generally be the first few years. For annuals like tomatoes, it would be removing blossoms the first few weeks after planting (and removing any blossoms developed before transplanting).  The answer is…maybe. Or more like, there probably is an effect, but it depends on the plant and environment as to how impactful the effect is. This phenomenon has been observed in several species, including Douglas fir, peaches, olives, and more.

For example, research shows that letting blueberry bushes fruit the first two years after planting (not removing flowers or fruits) reduces the biomass (vegetative growth) AND the yield in year 3. The plants will likely catch up in later years, but if your goal is to get plants established early and have fuller harvests sooner, removing flowers in years 1 and 2 would be advisable.

The same can be said for strawberries. The abstract from this paper from 1953 (I couldn’t track down the full article prior to publication) says that “removal of blossom from newly set strawberry plants helps more in the establishment of a vigorous planting than almost any other cultural operation.” This paper doesn’t measure biomass, but did find that removing flowers on day-neutral strawberries (that produce throughout the growing season) until July 1 resulted in maximized yields in the later season and removal of flowers for the entirety of the first year resulted in maximized yields in year 2 (note: in commercial strawberry production, strawberries are usually grown as an annual or at most a biennial, so maximizing early yields is important).

Now, for the all important tomato (drumroll, please). This study from the 70s found that removal of early blooms on indeterminate tomato plants resulted in larger plants (higher vegetative growth) and that eventually the fruit yield nearly caught up with the controls. They found that when fruit development started, leaf growth was “markedly depressed” and root growth ceased (and there was even some root death). So while there was ultimately a small loss of yield, the result was a better established plant that would likely be able to better weather environmental and disease issues throughout the season.

And beyond establishment, flower and/or fruit thinning on plants with high floral numbers has been shown in many plants (apples, blueberries, peaches, and tomatoes, to name a few) to result in larger, higher quality fruits. The same pathways apply here – each and every fruit is a sink. The more sinks you have, the more “mouths” the plant has to feed. So flower removal is a viable production strategy for many different crops and something that home gardeners should think about if you want the biggest, and juiciest fruits on the block.

Sources:

  • Chanana, Y. R., et al. “Effect of flowers and fruit thinning on maturity, yield and quality in peach (Prunus persica Batsch).” Indian Journal of Horticulture 55.4 (1998): 323-326.
  • Dejong, Theodore M., and Yaffa L. Grossman. “Quantifying sink and source limitations on dry matter partitioning to fruit growth in peach trees.” Physiologia Plantarum 95.3 (1995): 437-443.
  • Eis, S., E. H. Garman, and L. F. Ebell. “Relation between cone production and diameter increment of Douglas fir (Pseudotsuga menziesii (Mirb.) Franco), grand fir (Abies grandis (Dougl.) Lindl.), and western white pine (Pinus monticola Dougl.).” Canadian Journal of Botany 43.12 (1965): 1553-1559.
  • Hesami, Abdolali, Saadat Sarikhani Khorami, and Seyedeh Samaneh Hosseini. “Effect of shoot pruning and flower thinning on quality and quantity of semi-determinate tomato (Lycopersicon esculentum Mill.).” Notulae Scientia Biologicae 4.1 (2012): 108-111.
  • Hurd, R. G., A. P. Gay, and A. C. Mountifield. “The effect of partial flower removal on the relation betwen root, shootand fruti growth in the indeterminate tomato.” Annals of Applied Biology 93.1 (1979): 77-89.
  • Kim, Jin-Gook, et al. “Effects of cluster and flower thinning on yield and fruit quality in highbush’Jersey’blueberry.” Journal of Bio-Environment Control 19.4 (2010): 392-396.
  • Link, H. “Significance of flower and fruit thinning on fruit quality.” Plant growth regulation 31 (2000): 17-26.
  • Michael G Ryan, Ram Oren, Richard H Waring, Fruiting and sink competition, Tree Physiology, Volume 38, Issue 9, September 2018, Pages 1261–1266, https://doi.org/10.1093/treephys/tpy114
  • Rosati, Adolfo, et al. “Fruit production and branching density affect shoot and whole-tree wood to leaf biomass ratio in olive.” Tree Physiology 38.9 (2018): 1278-1285.
  • Scott, D. H., and P. C. Marth. “Effect of blossom removal on growth of newly set strawberry plants.” (1953): 255-6.
  • Solomakhin, Alexey A., and Michael M. Blanke. “Mechanical flower thinning improves the fruit quality of apples.” Journal of the Science of Food and Agriculture 90.5 (2010): 735-741.
  • Williamson, Jeffrey G., and D. Scott NeSmith. “Evaluation of flower bud removal treatments on growth of young blueberry plants.” Hortscience 42.3 (2007): 571-573.

TreM’s You Say?

Trees in forests have many defects such as deadwood, cavities and fungal infections

Arborists are trained in seminars and texts that rot in trees is bad. Wood decay can constitute a “hazardous condition” which when accompanied by the tree being in a place that has a target and the tree is large, can create a “hazardous tree”. The notion of hazardous trees is a uniquely human construct that has little to do with the ecology of trees, the variety of organisms that utilizes large declining trees, and does not consider what the various defects in trees may be contributing to the environment or forest around that tree in terms of organism habitat.  Humans require that trees living near them must perform appropriately otherwise get out the chain saw and make them comply.   In the last decade tree care for birds and  wildlife has become a popular training subject for arborists in the western United States.  In Europe researchers have been popularizing the notion that large trees can become centers of biodiversity because they have many microhabitats that support numerous organisms not found on younger trees.  This concept is abbreviated TreM or Tree related Microhabitat.

Cavities in trees are common TreM’s in mature trees

As trees mature and then decline, they accumulate deadwood, cavities, epiphytic organisms, excrescences, exudates, fungal decay organisms, and even accumulates of soil or pockets of water in branch crotches. Arboriculture practice tends to regard tree defects as having no value, thus we remove dead wood, cut down trees with cavities and condemn trees with wood decay sporophores. It is now accepted that the more “defects” a tree accumulates the quantity and diversity of organisms associated with that individual tree also increases. In this sense old trees become centers of biodiversity within both managed and unmanaged forests.

Decay fungi infect trees but when they produce a sporophore, that is a TreM, as it provides food for athropods, here the Pleasing Fungus Beetle takes a meal.

The health of a forest is not measured only by the quality of the wood it can produce or the number of board feet it can supply, but also by its connections to other organisms that ensure its health over time. Forests are ecosystems and require connections between organisms and diversity of organisms in order to be resilient. These organisms utilize not only living but also dying and declining trees. Ancient trees are often rich in defects and have many TreM’s.

Lichens are epiphytes that utilize tree bark and rocks as a place to grow

Tree injuries such as storm damaged branches, lightning scars, frost cracks, branch failures and and other damage are all considered TreM’s. While these are functional habitat in forests they may be quickly removed from the urban forest even if they do not pose a hazard. Now that they have apparent value, perhaps we can rethink their removal where and when appropriate.

Deadwood is an obvious TreM but so are bark folds, branch architecture, plus soil and water that accumulate in these areas

The TreM concept is derived from trees growing in forests not those in cities. TreM’s may not become a management tool for urban forestry, however there are many lessons to be learned from the TreM concept. The greater the number of microhabitats, the more organisms and connections between organisms there will be. This provides resilience even to urban ecosystems. There is strong evidence that TreM’s serve as a reservoir of organisms in forests helping to maintain their health. Using the TreM concept for non-forest trees will not change how trees are managed for many situations. Risk tolerance often trumps ecosystem services. Greater understanding of TreM’s will perhaps allow us to save trees that do not pose hazards where they would otherwise be disposed of. Some tree managers have tried to create defects in trees to enhance habitat for wildlife. This is not based in science and I do not advocate creating TreM’s for the sake of having them in trees. Fungi and other organisms find their way into trees all too easily. Until we have some science based evidence for the creation of TreM’s, I recommend against it. It’s the whole do no harm thing we have going as plant pathologists. Being aware of TreM’s and evaluating their usefulness in the urban forest is a new area of study.

Trees also create TreM’s under their canopies. Here Ramairia spp. fruits in oak/pine litter

In their field guide, Butler et al., 2020 describe 47 TreM’s that they further break down into 15 groups and 7 types. The field guide is available on line if you want to find out more about TreM’s. The research on TreM’s is nascent, and restricted mainly to Europe and Canada. This fall we will collect data in the Chiricahua Mountains to add to that body of research as part of the South Western Research Station’s Trees Course to be held the last week of September into early October.

References

Butler, R., T. Lachat, F. Krumm, D. Kraus, and L. Larrieu. 2020. Field guide to Tree-related Microhabitats. Descritpions and size limits for their inventory. Birmensdorf, Swiss Federal Insitute for Forest, Snow and Landscape Research WSL. 59 p. www.wsl.ch/fg-trems

Larrieu, L., Paillet, Y., Winter, S., Butler, R., Kraus, D., Krumm, F., Lachat, T., Michel, A.K., Regenery, B., and Vanderkerkhove, K. 2018 Tree related microhabitats in temperate and Mediterranean European forests: a hierarchical typology fr inventory standardization. Ecologial Indicators, 84: 194-207

“They call the wind Maria”

In the last week, I’ve driven all the way from western Virginia, where the redbuds are blooming, to Tallahassee, FL, where red clover is everywhere. As I drove through the mountains north of Charlotte NC, I noticed some signs indicating that strong gap winds may blow down the valleys when atmospheric pressure patterns align to produce strong pressure gradients that drive the wind. I have discussed wind before in previous posts (“Who has seen the wind?” and “Does wind chill affect plants?”) so you can find the basics of what causes wind and some of the different kinds of local winds by going to those posts. In today’s article I want to share some different local names for winds and other local weather and invite you to share your own local weather names. Note that this is not a complete list, but I will provide links at the end that prove a bigger sample of all the names that are used around the world to denote different kinds of weather, especially wind.

Redbud trees (Cercis canadensis) along Lake Marmo, Jay Sturner, Commons Wikimedia.

Local weather names based on topography

Local mountains and valleys can cause a big variety in the types of winds we observe. Generally, these winds can be classified as katabatic winds blowing downhill and anabatic winds blowing uphill. The direction depends on the time of day due to heating but also to large-scale weather patterns that direct the flow of air. Local winds can also occur due to changes in the heights of the ridges so that where the ridges are low, air can spill over the mountains in the gaps between peaks. Winds blowing downslope can also accelerate as they move to lower elevations, increasing their strength. Those winds can be very strong because of the funneling effect of the terrain leading to warnings like the ones I saw on Interstate 77 in the northern North Carolina Mountains. Some of these local winds in other parts of the world are called the Viento Zonda (or Zonda wind) in Argentina, the Williwaw in the Alaskan Panhandle, Karaburan in Central Asia, Chinook wind along the Front Range of the Rocky Mountains in the USA, Mistral in France, and the Warm Braw in the Schouten Islands north of New Guinea. You can read more about each of these by looking online at Wikipedia or other sites (link below). Winds which are affected by topography can provide good sources of steady wind for wind farms.

One of the most interesting large-scale topography-driven winds is the Tehuantepecer in southern Mexico which begins in the Gulf of Mexico (after coming south across North America) as a north wind that crosses the Mexican isthmus and blows through the gap between the Mexican and Guatamalan Mountains. It is so strong that it can be felt as much as 100 miles out to sea. This happens several times a year, especially in winter when the wind is more often from the north, and is amazing to see on https://earth.nullschool.net/ when it happens. In fact, as I am writing this on Thursday (March 28, 2024) it is happening today! How cool is that?

Tehuantepecer flow. Obtained from https://earth.nullschool.net/.

Local weather names based on changes of air mass

Some winds are named for abrupt shifts in atmospheric temperature and humidity when air from a different source region moves in. They can be small-scale changes due to outflows from individual thunderstorms like gust fronts or can be larger-scale changes due to wind blowing an air mass with colder, hotter, or drier characteristics into the area.

Some of the winds associated with drier and dustier conditions occur near desert locations as the wind shifts to bring in air from the desert regions to replace the air that was already there. One of the most common terms for one of these is haboob, which originated in Sudan but is now used in the western U. S. (Haboob basically means “dust storm” in Arabic but sounds a lot more exotic). A haboob is associated with a wall of hot, dusty air that moves into the region from the desert, bringing low visibilities to the region (often resulting in car accidents as drivers caught unawares can be blinded by the sudden change in conditions). Other dry winds include the Khamsin in Egypt and the Red Sea region, the Scirocco in North Africa and the Mediterranean, and the Harmattan in West Africa.

Airflow into NE Georgia on January 1, 2021, causing a wedge of cold air at the surface. Source: University of Georgia Weather Network.

Cold winds include the Blue Norther, a fast-moving cold front that moves in from the north that can send temperature plummeting by 20-30 degrees in a few minutes, the Bora in the Adriatic region, the Khazri in the north Caspian Sea, the Montreal Express in New England, and the Norte in Mexico. In the Southeast US, we have what we call the Wedge, which is a shallow layer of cold air that moves south along the eastern slope of the Appalachian Mountains under northeast flow, bringing clouds, cold weather, and the chance of ice storms to the region in spring. The Wedge is partly due to topography as well, since the cold air is so shallow that it can’t move west over the Appalachian Mountains and thus is forced down to us in parts of the Carolinas and Georgia. Hot dry winds include the Brickfielder in southern Australia, the Leveche in southern Spain, and the Diablo and Santa Ana winds in California, which are also affected by air moving down from the mountains into coastal areas of the state when high pressure dominates the Southwest.

Local winds are associated with thunderstorms

In addition to the wind names associated with topography and change of air quality there are also some names that are tied to smaller weather events like hurricanes and thunderstorms. Those include the Kalbaishakhi in India and Bangladesh, the Bayamo on Cuba’s southern coast, the Pampero in Argentina and Uruguay, the Cordonazo on the west coast of Mexico, and the Borasco in the Mediterranean. Strong winds associated with thunderstorms can cause tremendous damage to gardens, trees, and buildings and can cause problems with flights and road transportation. Since it is spring and we are entering severe weather season for a lot of the US, it’s a good reminder that it does not need to be a tornado to cause significant damage—straight-line winds can be just as severe.

Red clover, Pam Knox, 2014.

Knowing your local climate is important for gardeners

Anyone who lives for a long time at a location will start to recognize the local weather and climate patterns that govern your local garden conditions. If you are really dedicated, you can even measure these variations. If you know that in certain seasons, you are more likely to experience very dry dusty air, you might consider plants that can survive those conditions with less care. If you live in an area that is subject to frequent strong local winds, you will need to plan your garden to place more wind-resistant plants where the air flow is the strongest or else construct a wind shelter to keep more sensitive plants safe. Buildings can also affect the wind flow and can cause “wind tunnels” where the air is constricted and blows faster in the narrow passage.

Note: For those of you who wonder about the title of this post, Maria (sometimes listed as Mariah) is a fictional wind popularized in “Paint Your Wagon” (Lerner and Lowe, 1951) and by the Kingston Trio (1959). The name may have originated with the 1941 book “Storm” by George R. Stewart according to my colleague Jan Null of Golden Gate Weather Services.

Sources of more local wind information

Here are some websites that have listings of additional local winds, although none of them is a complete list, I am sure.

Wikimedia (with links to most of the individual winds): https://en.wikipedia.org/wiki/List_of_local_winds.

GG Weather: https://ggweather.com/winds.html

U. K. Met Office: https://www.metoffice.gov.uk/weather/learn-about/weather/types-of-weather/wind/wind-names

If you have a local name for the wind or weather in your region, please share it in the comments!

Phoenix dust storm, 31 July 2011, Alan Stark, Commons Wikimedia.

News for gardeners in deer country: one solution to deer problems may simply be smaller gardens

Wherever whitetail deer occur they present a challenge for gardeners. The internet offers abundant advice on this, but too often it is simplistic gardening myth such as scattering human hair or planting garlic.

Distance shot of micro-exclosure with the protective ability clearly evident

Historically in deer control literature there have been occasional observations that deer hesitate to enter an area which looks too small or constrained for rapid escape. Finally, it came time to acknowledge and test this theory.

Green Island Preserve and the University of Minnesota Extension set about investigating this possibility through their Regional Sustainable Development Partnership (RSDP) program which provides support to community-benefit projects in partnership with private citizens and organizations. The test site was a 60 acre rewilded forest inside a small northern city. Deer pressure was heavy with resident herd numbers varying from 16-30 animals during the trial.

This graphic represents approximate scale, small, but useful for special plants and for efforts at forest understory diversification.

The first issue was defining a “small space” for testing the theory. In all the literature only one other trial of this concept could be found. It was conducted in Wisconsin with traditionally fenced spaces ranging from 15 ft by 15 ft to 21 ft by 21 ft feet during part of one summer. The Minnesota Green Island Preserve and RSDP trial chose 16 feet by 16 feet based upon the dimensions of manufactured, ridged cattle panels. These panels are 50 inches in height and 16 ft long and tend to be readily available at Fleet or Home stores even in suburban areas. If successful, their advantage would be very easy set-up and portability at a reasonable cost.

Micro-exclosure close-up at the advent of the growing season.

What was the result? Over 2 years of trial, this test demonstrated 95% success. Six micro-exclosures were established and planted within forested and forest edge locations in a zone of heavy deer pressure. During an observation period of 730 days, only one instance of deer browse occurred inside a micro-exclosure.

Notice the ease and portability of an exclosure from “Cattle Panels”

This success rate is more impressive because these fences are not a physical barrier to deer entry. They are strictly a psychological deterrent. This places them in much the same class as flashing lights, sound cannon, water spray, etc., but according to this study’s data, they’re actually more effective. All psychological deterrents have a failure rate dependent on application, monitoring, seasonality, rainfall, and more. But micro-exclosures show a low failure rate, without maintenance. If a deer breach does occur, the solution is simply to make the exclosure appear even smaller. This can be done by stretching rope across the center holding noticeable flagging. It can be lifted off when tending plants.

A concise photo review of the micro-exclosure concept

This is a highly promising discovery which merits further controlled testing by universities and professionals. The Minnesota Green Island Preserve and RSDP trial was specifically targeted to white tail deer predation while other ungulates present browse problems in other geographies. Rabbits were not addressed. However, until further and definitive research is conducted, citizen-scientist gardeners can contribute by testing versions of this method for themselves and adding their data to the general deer-control knowledge base. In using and testing micro-exclosures, gardeners will fare infinitely better than by spreading human hair, interplanting garlic, or buying “ultrasonic” gizmos.

This post was provided by Kent Scheer. Kent is a career sculptor with a side mission for reforestation and environmental compassion. He is the editor of three handbooks on sustainable agriculture resources and owner/ manager of a rewilded pine forest in northern Minnesota created for environmental education and awareness. You can contact Kent at kentscheer@outlook.com.

Trials and Triumphs: All-America Selections Judging and 2024 Winners

I’ve written before about my time as a trial judge for the All-America Selections program, which I did during my seven years with Nebraska Extension. I happened upon the opportunity to be a judge by accident, but really came to relish my time and the work that the organization does.

You see, All-America Selections started in 1932 as a way to actually certify the claims that newly-introduced plants were actually better than ones already available. Previously it was sort of the wild-west of claims made by everyone who had a garden catalog or wrote a garden publication. There was no way to level the playing field and certify these claims until W. Ray Hastings, the president of the Southern Seedsman Association, established the All-America Selections trial program. As a non-profit and now part of the National Garden Bureau, the organization and its volunteer judges can serve as impartial arbiters of the superiority of newly-introduced plants.

This emblem on a seed packet or plant label indicates that the plant has gone through rigorous testing and performs well in gardens across the US (and beyond).

This is especially important in this day and age of spurious claims and piles of misinformation on the web. The organization uses a research-based approach in determining high-quality plants with replicated trials all across the country. Plants have to perform well in all regions of the country to be a winner. Sometimes if a plant does well in one area but not others, it will be considered a regional winner.

Ninety-one years later the organization still serves as the gold standard for performance in home garden plants. Judges have a track record of picking plants that are favored even decades after they are introduced. The ‘Celebrity’ tomato, winner from the class of 1984,  has probably been grown by almost everyone who grows tomatoes and can be found in almost every garden catalog or seed rack. ‘Bright Lights’ Swiss Chard, class of 1996, is also a go-to favorite for almost anyone who grows chard. And while many plant cultivars come and go with trends and company closures, there are still seven cultivars from the first class in 1933 still available for home gardeners to purchase through retailers: Tomato ‘Pritchard’, Spinach ‘Giant Nobel’, Pansy ‘ Dwarf Swiss Giants’, Nasturtium ‘Golden Gleam’, Carrot ‘Imperator’, Canterbury Tale ‘Annual Mixed’, and Cantaloupe ‘Honey Rock’. You can check out their profiles on the AAS website to see where to buy them.

2024 Winners

So far there have been 10 winners announced for the 2024 garden season. It unlikely that any more will be introduced at this point, but they often aren’t announced until they are ready to go to market so there’s always a chance. I served as a judge for the edible crops (vegetables, fruits, herbs) for both in-ground and container trials so I’ll start with the edible winners. Then I’ll also share info on the ornamental winners.  You can always find more information, including which seed and plant suppliers/retailers carry the plants, at the AAS website.

Broccoli Purple Magic F1

Broccoli Purple Magic - AAS Vegetable Winner

A striking purple broccoli with tight growth habit. Judges noted it for its great broccoli flavor that was sweeter and more tender than the green broccolis to which it was compared. It was also noted for its heat and stress tolerance.

Broccoli Skytree F1

Broccoli Skytree All-America Selections Winner

This broccoli’s long stalks set it apart. They make the compact heads easy to harvest. It is also noted that the stalks themselves are tender, sweet, and flavorful so they should be eaten as well. It is noted as being uniform and early maturing. Skytree was a regional winner in the West and Northwest. Container suitable.

Pepper Red Impact F1

All America Selections Winner Red Impact Pepper

This is a Lamuyo pepper which is a Spanish pepper noted for exceptional sweetness. It is sweeter than your standard bell pepper. The fruits are huge – nearly 8” long and double the size of standard bell peppers. We noted that they were delicious and sweet, even when green.

Celosia Burning Embers

All America Selections Winner Celoisda Burning Embers

A beautiful and long-lasting celosia in the garden. It is noted for its bronze leaves with pink veins and bright flowers. It is well-branched, heat and drought tolerant, and long-lasting in the garden. It lasted well past other types trialed. Container suitable.

Geranium Big EEZE Pink Batik

All America Selections Winner Geranium Big EZEE Pink

This geranium was noted for its long-lasting flowers and large flower heads. The prolific and large flower heads have a unique pink and white mosaic design. Judges also noted that it was very sun and heat tolerant. Container suitable.

Impatiens Interspecific Solarscape ® Pink Jewel F1

AAS Winner Impatiens-Solarscape XL Pink Jewel

Noted for the bright pink flowers with an opalescent sheen, these flowers lasted well through the season. These plants are sun tolerant and also noted as being resistant to impatient downy mildew, which has basically made it almost impossible to grow (or buy) impatiens lately. Container suitable.

Marigold Siam Gold F1

Marigold Siam Gold - National AAS Winner

This large-flowered marigold was noted for season-long performance. It was also noted that the plants didn’t need staking, even though they were tall and had large flowers making them top-heavy. Container suitable.

Petchoa Enviva™ Pink

All America Selection Winner Petchoa Enviva Pink

You might be asking yourself the same question I did – “what the hell is a petchoa?” And the answer is great – it is a hybrid cross between an Petunia and a Calibrachoa, often called Million bells. The result is a beautiful, mounding plant that is covered with large, beautiful pink iridescent flowers with yellow throats. The judges noted that plants performed well all summer, even in extreme conditions. Container suitable.

Petunia Sure Shot ™ White

The judges noted that this petunia performed like a powerhouse all season long, including extreme summer heat and weather. Most notably, the flowers kept their snow-white flowers all season, whereas many white flowers fade or get blemished quickly after blooming. Regional winner from the West, Northwest, and Great Lakes regions. Container suitable.

Verbena Sweetheart Kisses

Verbena Sweetheart Kisses

This blend of verbena has pinks, roses, reds, and whites that were super attractive to bees and other pollinators. Judges also noted the fine foliage, which isn’t like standard verbena foliage. The plants performed well all season long, even in heat and drought. Container suitable.

Petchoa – bringing together the best of the Petunia and Calibrachoa worlds

Wrapping it up

Finding that AAS seal is a great way to assure that you’re buying high performing plants for your garden. I truly did enjoy my time as a judge, even though my trials were often “if it lives through this, it definitely deserves an award” type of gardening. Now that I’ve left Extension, I’ll no longer serve as an official judge, but I still plan to volunteer to help the Extension office and serve as an “ambassador” for the AAS program. I’m glad they’ll let me stick around!

Underrated Beneficial Arthropods Part 2: Natural Enemies

Continuing with the theme of Underrated Beneficial Arthropods that I brought up in my December post about Underrated Pollinators– I will be focusing on the next category of what I consider the trio of beneficial arthropods (which includes pollinators, natural enemies, and nutrient cyclers).

Natural Enemies

Natural enemies are comprised of predatory and parasitic arthropods, in which one or more life stages of the arthropod feed on other organisms, such as garden pests, thereby killing them. Many gardeners are familiar with this group which includes some of our most ‘famous’ predatory arthropods such as mantids, lady beetles, lacewings, etc. This category, however, contains a plethora of beneficials that you may not always think about because most of what they do often occurs behind the scenes.

This is also a very broad category so this post will not be a comprehensive collection of all the natural enemies out there (because there are literally countless) but will have a variety of some of the most abundant, important, and unique. Like the last post it will be grouped by order or major category of Arthropod, where I will go into examples of the rockstars within that category. I will also include several resources at the end which I used to compile this information and encourage those of you who want to dig deeper into the world of natural enemies to take a look.

Flies

Flies (order: Diptera) are an incredibly diverse group of insects which provide a wide variety of different ecosystem services. They undergo complete metamorphosis (which basically means that they have 4 growth stages starting as an egg, and a major transition from their larval form of maggots that turn into pupae, and then into the adults that we recognize as flies). As such, flies also inhabit countless different ecosystems (including terrestrial and aquatic) and can be found on every continent including Antarctica. We learned about pollinating flies in the Underrated Pollinators blog post but, like many of the arthropods that we are going to cover, flies span all 3 of the major categories of beneficial arthropods. We will discuss them a bit more in-depth in the nutrient cycler category, but for this post I wanted to highlight some examples of the cool predatory and parasitic flies that we can find in our yards and gardens.

Tachinid flies [Tachinidae] are dark-colored medium-sized flies that are recognized by the dark bristles covering the body of the adults (which look similar to house flies). This family contains over 8000 described species and can be found on nearly every continent. The cool thing about this group is that every single species of Tachinids has a parasitic larval stage and many are continually utilized as natural enemies of many common pest species. As such, these flies have also been intentionally imported into various locations for biocontrol purposes. The targets of tachinids include a variety of different arthropods including caterpillars, sawflies, grubs, adult beetles, and many more! To learn more about this awesome group of parasitic flies, check out this excellent article on Tachinids written by Susan Mahr of University of Wisconsin-Madison.

Adult Tachinid fly. Photo: David Cappaert, Bugwood.org

Hover flies [Syrphidae] also known as flower flies or ‘Syrphids’ are another awesome group (you might recognize them from their shout-out as pollinators in their bee-resembling adult stage). Larval syrphids can be terrestrial or aquatic. You may recognize the term “rat-tailed maggots” which refers to the aquatic larval syrphids that have a breathing tube resembling a ‘tail’ at the end of their body. They are used in biocontrol of a variety of soft-bodied arthropods including aphids, mealybugs, thrips, mites, and more. To learn more about hover flies, check out this excellent resource about their use as a biocontrol agent from Cornell University. 

Syrphid larva feeding on oleander aphid. Photo: David Cappaert, Bugwood.org

True Bugs

True bugs (Hemiptera and Homoptera) contain a variety of easily recognizable garden inhabitants that can be characterized by their piercing/sucking mouthparts. Although there are many plant feeders and common pests in this category (including aphids, cicadas, mealybugs, leafhoppers, scale insects, stink bugs, etc.) there are also some excellent natural enemies that don’t always get the spotlight. Often referred to as ‘Predatory Bugs’, this fierce category of insects includes assassin bugs [Reduviidae], big-eyed bugs [Geocoridae], minute pirate bugs [Anthocoridae], damsel bugs [Nabidae], and predatory stink bugs [Pentatomidae]. They vary in shape and size, but feed in the same way: by piercing their prey with their mouthparts and sucking out the fluids. Many are, therefore, excellent biocontrol agents in our yard and garden landscapes. Some are even commercially available for use in greenhouses and hoop houses/high tunnels to suppress populations of common soft bodied insect and mite pests. To learn more about them, check out this great article on Predatory Bugs from Colorado State University.

Assassin bug feeding on elm leafminer. Photo: Whitney Cranshaw, Colorado State University, Bugwood.org

Wasps

Wasps (order: Hymenoptera) often strike fear in many people who are unaware of the sheer diversity and complexity of this group of insects. You learned about the pollinating wasps in my last Blog post, but there are also several groups of predatory and parasitoid wasps that are commonly found in our landscapes. Predatory wasps include many different species including the commonly known social wasp species (such as yellow jackets, hornets, and paper wasps) but also include countless other predatory species. One group of these common predators includes the striking family of thread-waisted wasps [Sphecidae]. This family includes spider-hunting wasps, cricket-hunter wasps, and katydid wasps. Another common family includes the cicada-killers [Crabronidae] which are a large and intimidating-looking wasp species that are actually harmless to humans. Both of these groups of solitary wasps work similarly by paralyzing their prey (often characterized by their common names) and then bringing their live bodies back to their underground nests for their larvae to feed on.

Cicada killer wasp carrying a paralyzed cicada back to her nest. Photo: Ronald F. Billings, Texas A&M Forest Service , Bugwood.org

Parasitoid wasps are an incredibly large group of wasps which include many species varying greatly in size and shape. If you’ve seen the movie ‘Alien’ you have an idea of what the life cycle of these wasps is like. The mother lays her eggs in a living host (which spans countless species of insects), and her larvae feed on the host from within, until they emerge as adults. This includes groups such as braconid wasps [Braconidae], ichneumon wasps [Ichneumonidae], and families such as Aphelinidae, Scelionidae, Eulophidae, and Trichogrammatidae. Each species of parasitoid wasp needs another species of host insect in which to complete its life cycle, and entomologists estimate that there may be hundreds of thousands of species of these incredible organisms!  Many parasitoid wasp species are important biocontrol agents for some very famous insect pests (including the Emerald Ash Borer, which those of us in North America are very familiar with). You can even purchase some commercially available species of these parasitoids to manage certain pests in your gardens and greenhouses. There are even hyperparasitoids which are parasitoid wasps that specifically use other parasitic wasps as hosts. To learn more about the incredible world of wasps, check out this great article by Marissa Schuh from University of Minnesota.

A tomato hornworm caterpillar parasitized by braconid wasps that have emerged from internally feeding on the caterpillar, and exited their white silken pupae as adults. Photo: Gerald Holmes, Strawberry Center, Cal Poly San Luis Obispo, Bugwood.org

Beetles

Beetles (order: Coleoptera) are one of the most diverse groups of insects and include groups that fall into each of the three categories of beneficial arthropods. Although some are pests in their larval and/or adult stages (example: Japanese beetles) and feed on a variety of different plant structures including leaves, stems/trunks, fruit, flowers, seeds, and roots. We are also familiar with some of these predatory beetles (with many shining a spotlight on the easily recognizable and lovable lady beetles). That being said, there are countless other groups of predatory and parasitic beetles that can have a significant beneficial impact on our landscapes.

A violet ground beetle (Carabus violaceus) which is a nocturnal hunter of slugs. Photo: Mary C Legg, Mary C Legg, Bugwood.org

One example of a large group of these are the predatory ground beetles [Carabidae]. This dark and iridescent family of beetles can vary in size and shape. They have distinct and powerful chewing mouthparts (mandibles) which enable them to be excellent generalist predators and scavengers. The more than 40,000 species (spanning every continent except Antarctica) are common garden-inhabitants and perform invaluable services of biocontrol in agricultural, horticultural, and home garden settings.  

In addition to feeding on many insect and mollusc pests, certain host-specific groups of plant-feeding beetles are also used in the biological control of weed species (including many noxious weeds) and reared by insectaries for distribution.

Neuroptera

Neuroptera (derived from the Greek words meaning “nerve” and “wing”) is an entire order consisting only of predatory insects! The most famous of this group are the lacewings [Chrysopidae] (which many gardeners recognize as an awesome predator of many soft-bodied garden pests). This order also includes other incredible species such as antlions or “doodle-bugs” [Myrmeleontidae], dobsonflies [Corydalidae], mantidflies or mantid lacewings [Mantispidae], snakeflies [Raphidiidae], and more.

Lacewing larva feeding on potato psyllid. Photo: Whitney Cranshaw, Colorado State University, Bugwood.org

Mites

Mites (subclass: Acari) are another often misunderstood group of arthropods. These are arachnids (characterized by 4 pairs of legs and two body segments). Mites feed on countless living and decaying organisms including plants, animals, fungi, yeasts, algae, mosses, and even bacteria. They range in size, though most are tiny and many are even microscopic soil-dwelling organisms. The sheer diversity of mite species (due to their very broad range of ecological roles) indicates that there may be over a million species that have yet to be described.

Packet of predatory mites, to be released in a nursery. Photo: Whitney Cranshaw, Colorado State University, Bugwood.org

Many gardeners recognize some common mite pests (such as the two-spotted spider mite), but there are countless predatory mite species as well. Predatory mites [Phytoseiidae] are slightly larger than spider mites, and excellent predators of spider mites and eriophyid mites which are common plant-gall causing mites. There are several species used in biocontrol of soft-bodied insect and mite pests as well as commercially available ones that you can purchase.

Spiders

I am sure that no one reading this post would be surprised to find these amazing arachnids on this list. Although some species are dangerous to humans, most species of spiders will leave you alone, and are incredible predators of lots of indoor and outdoor insect pests. Many humans dislike these 8-legged organisms, though most are still understanding of the important role that they play. Spiders can be strikingly beautiful, colorful, and variable in size and shape. Although some build webs to capture prey, others are active hunters or trappers that capture other organisms on which to feed. Some are even kept as pests (I had 4 tarantulas of my own at one point, and I thoroughly enjoyed observing them daily, and handling the more mild-mannered ones). There is so much that can be said about the incredible role of spiders in our homes, gardens, and natural ecosystems that it would be difficult to condense into a short summary (and may therefore be a separate Blog post in the future since this one is getting pretty lengthy).  

Jumping spider. Photo: Joseph Berger, Bugwood.org

Centipedes

Centipedes span 4 different orders including soil centipedes [Geophiulomorpha], garden/rock centipedes [Lithobiomorpha], giant centipedes [Scolopendromorpha], and house centipedes [Scutigeromorpha] all of which are carnivorous. This group of arthropods is characterized by many body segments, venomous fangs, and 1 pair of legs per segment. Although many people are creeped out by these ferocious many-legged beasts, they stay out of the way and eat many common pests in home and garden landscapes.

Stone centipede. Photo: Joseph Berger, Bugwood.org

I hope that you enjoyed reading about some of your gardening companions, and if nothing else: I hope that it broadened your perspective of all the different critters that share your landscape with you. Stay tuned for my next post in June, which will cover the third and final category of beneficial arthropods: the nutrient cyclers.

Resources

Natural Enemies of Pests. (Colorado State University).
https://agsci.colostate.edu/agbio/ipm/natural-enemies-of-pests/

Tachinid Flies. (University of Wisconsin-Madison).
https://hort.extension.wisc.edu/articles/tachinid-flies/

Syrphid Flies. (University of Minnesota Extension).
https://extension.umn.edu/beneficial-insects/syrphid-flies

Hover Flies. (Cornell University).
https://cals.cornell.edu/new-york-state-integrated-pest-management/outreach-education/fact-sheets/hover-fly-biocontrol-fact-sheet

Wasps are a gardener’s friend. (University of Minnesota Extension). https://extension.umn.edu/yard-and-garden-news/wasps-are-gardeners-friend

Cicada Killer Wasps. (University of Kentucky).
https://entomology.ca.uky.edu/ef004

Parasitoid Wasps. (University of Minnesota).
https://extension.umn.edu/beneficial-insects/parasitoid-wasps

Hyperparasitoid Wasps. (North Carolina State University).
https://entomology.ces.ncsu.edu/biological-control-information-center/beneficial-parasitoids/hyperparasitoids/

Predatory Ground Beetles. (Colorado State University).
https://agsci.colostate.edu/agbio/ipm-pests/ground-beetles/

Biological Control of Weeds. (Washington State University).
http://invasives.wsu.edu/biological/index.htm

Cardboard does not belong on your soil. Period.

In the quarter century that I’ve been researching, publishing, and educating on the topic of landscape mulches, one thing has become clear: cardboard should never be used as a mulch. This viewpoint has been of great interest to gardeners; in fact, my earlier post has been the most frequently viewed post since it was published in 2015. I occasionally appended new information to the original post as needed, but the topic deserves an update.

Landscape mulching with cardboard is wildly popular but has no published research to support it. Photo courtesy of Chris Martin on Flickr.

Rather than rehashing what’s been written earlier (which can be found here, here, here, here, and here in addition to the link above), I’m providing information in a Q&A format that might be helpful:

Q: Is there research on using cardboard mulch in home landscapes?

A: Not much. To date, the only peer-reviewed research relevant to landscape soil conditions is our own work published in 2019. The abstract explains the importance of the results to landscape soil health as stated in the abstract (below):

“The orders of magnitude differences in diffusion coefficients among the mulch materials, however, could negatively impact a diverse soil environment such as those found in biologically rich landscapes with higher oxygen demands. Among the mulches tested, wood chips are a preferred method of mulching in terms of providing best gas permeability, particularly in landscape conditions.”

This chart (derived from our 2019 study results) demonstrates the increased impairment of gas movement by different mulch types.

Q: Cardboard has been used as a mulch in agricultural production. Why doesn’t that research support using it in landscapes?

Sheet mulches, including black plastic, is frequently used in agricultural production where weed control and maximzing plant yield are the most important concerns. Photo courtesy of Wyoming BLM.

A: The goal in agricultural production is to maximize yield of an annual crop. In contrast, the goal in caring for a permanent landscape is to maintain a healthy soil ecosystem that will support plant life long term. The table below explains these differences in more detail.

Comparative criteria for intensive agricultural production, home vegetable gardens, and managed landscapes

Q: Okay, I understand that science doesn’t support using cardboard as a landscape mulch, but what about my vegetable garden? Isn’t the research on agricultural crops relevant there?

A: The research on agricultural production mulches is more relevant if maximizing yield is your most important goal. But your goals may include maintaining a healthy soil ecosystem, reducing the use of pesticides and fertilizers, and other criteria. Are you concerned about the established negative impacts that cardboard and other sheet mulches have on soil life? If so, then sheet mulches are not a good choice compared to chunky, three-dimensional mulches.

Q: I like reusing cardboard packaging as part of organic weed control. Isn’t that a good enough reason to use cardboard?

A: In addition to interfering with water and gas movement into the soil environment, corrugated cardboard has chemical contaminants that you really don’t want in your soil or even your compost pile. Corrugated cardboard contains environmental contaminants including dioxin and PFAs or “forever chemicals.” No gardener should want to introduce more of these widespread contaminants into their landscape or garden soils.

Recent peer-reviewed publication looking at hazardous chemicals contained in cardboard and other recycled materials.
Table from Fernandes et al. (2023). Compare the levels of contaminants between shredded cardboard and untreated wood shavings.

As I’ve been recommending for nearly a quarter century now, the very best mulch to use for treed landscapes is arborist wood chips. There is robust, peer-reviewed science establishing the benefits of arborist chip mulches in controlling weeds, enhancing growth and establishment of landscape plants, and maintaining a functional soil ecosystem. In contrast, sheet mulches such as plastic, weed fabric, and cardboard have demonstrated negative impacts on the long-term health of landscape soils. Any resource that says otherwise is not paying attention to the research-based facts.

Arborist wood chips protect exposed soil and suppress weeds while supporting desired landscape plants

The Times They Are A-Changin’—What the new La Niña Watch means for the NH growing season

In this blog I’ve talked several times about El Niño and La Niña and how they affect climate across the Northern Hemisphere as well as their impacts on the rest of the world. We are currently in a strong El Niño with sea surface temperatures in the Eastern Pacific Ocean (EPO) that are much warmer than the long-term average. But underneath the surface the ocean currents are starting to change and the El Niño is expected to swing quickly into the opposite phase, La Niña. That will affect us in North America but also other parts of the world since both El Niño and La Niña are linked to global atmospheric patterns. Since a La Niña Watch was just issued by NOAA this week I will be talking about the changes we can expect to see over the next few months and how those changes will affect gardens and gardeners.

Daffodil crop ready, Andrew Wood , Commons Wikimedia

Review—What are El Niño and La Niña?

El Niño and La Niña are opposite phases of a large-scale atmosphere/ocean pattern that is driven by temperatures in the EPO. The pattern affects climate in many places around the globe. It is the biggest driver of seasonal climate in the Southeast and Pacific Northwest as well as in some other countries, especially in Northern Hemisphere (NH) winter when it is usually the strongest.

In September 2023 I discussed the likely impacts of the El Niño that was growing at that time and how it would affect your winter gardens. The conditions I expected have mostly been observed, although there are some local differences that are not surprising considering that each event is unique. Northern states have been incredibly warm with little snow, while in the Southeast we have had a lot of rain and cooler (although not frigid) temperatures due to wet soils and a lot of clouds blocking the sun. California is getting hit by one atmospheric river event after another, so they are also very wet and are even seeing a lake in Death Valley. I imagine they will have quite a bloom of spring flowers when it gets warmer because of the ample moisture. What have you experienced in your area? Did my earlier column get it right?

Alnarp (Sweden)—Spring Leaves, Susanne Nilsson, Commons Wikimedia

How is this season different than a typical El Niño winter?

Even though we have had the swings of El Niño and La Niña (collectively called El Nino Southern Oscillation or ENSO) for thousands of years as evidenced by layers in ice sheets in Peru and ocean sediments, there are other changes that are not cyclical. The rise in global temperature over time is showing up as a warming trend in all seasons but especially in winter. That does not mean we don’t see other swings in climate over time because ENSO and other atmospheric cycles are still occurring, but they are superimposed on the slowly rising temperature associated with increases in greenhouse gases so the cold outbreaks aren’t quite as severe and the warm spells last longer.

Sea surface temperature departure from normal for 2024-2-12.

This year one of the most notable things we are seeing in global climate is the unbelievable warmth in the Atlantic Ocean. Temperatures there now are at values consistent with June or July temperatures! This is the energy that will feed tropical storms later in summer (more on that in a minute). Scientists are still not sure of all of the factors that are contributing to these record-setting conditions, but they may include the eruption of Hunga Tonga, the elimination of sulfur emissions from modern cargo ships, and changes in the global ocean circulation.

Plum blossoms starting to bloom, John Morgan, Commons Wikimedia.

In addition, in spite of one cold big outbreak this winter across the eastern United States, most areas have been warmer than normal resulting in an early spring that has brought honeysuckle leaves to my yard more than a week early. You can follow the “green wave” north and see when it gets to your area or verify that it’s already there at the National Phenology Network site. I am concerned about the possibility of having another late frost like 2023 that could impact the peach and blueberry growers in the Southeast since our average last spring frost date is early to mid-March for most of the commercial peach region. There has been enough cold weather for most of the fruit-producing plants to have reached their required number of chill hours, which means the warm weather is making them ready to bloom. While I don’t see another cold outbreak on the horizon for the next few weeks, we have had frosts in the Southeast into April before so we are not out of the woods yet.

ENSO probabilities for 2024 as of mid-February.

When will La Niña begin?

Climatologists predict that El Niño will weaken through spring and we will swing back into neutral conditions by the April through June period. From there most models predict we will move into a La Niña by the June through August period. By NH fall (September through November) there is a 77% chance we will be in La Niña conditions. This has implications for the summer and especially for the Atlantic tropical season since in neutral and La Niña years the number of tropical storms that occur in the Gulf and Atlantic is higher than in El Niño years. Last year despite El Niño we had 20 named storms, much more than the average of 14 events. This was in part due to the unusually warm water. Most of those stayed over the Atlantic Ocean rather than make landfall due to the presence of a strong jet stream high in the atmosphere which disrupted the development of storms farther to the west and prevented a lot of damage to us in the United States. In spite of that, we still had Hurricane Idalia and Tropical Storm Ophelia, both of which caused a lot of damage to infrastructure and agriculture.

With La Niña fully in place by fall, there will be little to stop the development of tropical storms in the Gulf and Atlantic Ocean except for Saharan dust and unfavorable weather patterns in the United States that could at least shunt any storms away from land. Some early unofficial predictions are for 25 or more named storms to occur this year, although the official predictions are still a few weeks away.

Next winter, we can expect La Niña to control a lot of our climate. That means warmer and drier conditions across the southern part of the United States while cold and wet conditions return to the northern states. Here in the Southeast, that means soil could be pretty dry in spring 2025 leading to issues with planting although it will be easier to drive heavy equipment into the fields than I expect will happen this year.

Field with daffodils, Txllxt TxllxT , Commons Wikimedia

What does all of this mean for gardeners in the United States?

Because of the recent warm conditions associated with rising temperatures and enhanced by El Niño in northern parts of the country, spring is coming early to many places. That can be a good thing if you like flowers and don’t like snow, but it does mean that your early flowers will still be susceptible to frost damage if we get another cold outbreak later in March or even into April or May for northern states. So you will need to be prepared to protect the tender plants if a frost or freeze occurs.

The end of El Niño and the eventual rise of La Niña also has implications for areas that are affected by tropical systems. This includes the Gulf and East Coasts and areas downwind of those locations but can also include parts of California and the Southwest which can see impacts from tropical systems in the EPO west of Mexico. Rainfall could be hit or miss in the late summer depending on where the storms go. You should prepare well in advance of June 1, the official start of the season, because the warm ocean water could allow tropical storms to develop in May ahead of the “official” start. That means making sure you remove damaged limbs or other objects that could become wind-borne debris, make sure you have adequate drainage for heavy rain, and keep an inventory of your belongings that could be washed or blown away in a storm. Have a family plan to keep in touch and evacuate if you need to, including pets and livestock. You can find a lot of good information on preparing for and recovering from natural disasters in this University of Georgia handbook, even if you are not in Georgia or the Southeast.

Forsythia in snow, Famartin , Commons Wikimedia

While the current warm weather makes gardeners eager to get out in their plots and get started, it’s probably too early to start in most of the country except the most southern areas. But you can dream and start planning for the warmer weather soon to come!

Unpacking a Peck of Purple Genetically Engineered Tomatoes

Excitement spread across social media recently with the announcement that a genetically engineered tomato, creatively named “The Purple Tomato” is now available for home gardeners. Gardeners, plant scientists, and others rejoiced at the news that a purple tomato engineered with genes from a snapdragon to boost the plant pigment anthocyanin is now available for home gardeners to purchase. But why were people so excited? And what does this mean?

The Purple Tomato: What is it and why is it exciting and important?

The Purple Tomato was developed by a company called Norfolk Healthy Produce. The company was founded by Professor Cathie Martin (and other scientists) who is a professor at the University of East Anglia and a group leader at the John Innes Centre in the UK. On February 6, 2024 they announced that seeds were available to home gardeners in the US after clearing regulatory approval hurdles by the USDA, EPA, and FDA to assure that it is safe for human consumption, for growth in US without safety containment measures, and that it does meet its claims of added nutrients. Read more about the US regulatory process here.

For all the tomato aficionados out there, The Purple Tomato is an indeterminate cherry tomato. Indeterminate means that the plant doesn’t stop growing as long as it is healthy and will produce a “vine” that needs to be staked or trellised off the ground. Production of fruits continues throughout the season starting at the bottom of the plant and going up as long as it is healthy.  Of course, it is a cherry tomato so you’ll have hundreds or thousands of tiny fruits to pick through the season. Some gardeners love growing cherry tomatoes. Others hate it for that fact. So you win some, you lose some.

Read more on indeterminate vs. determinate here.

The tomato contains two genes from snapdragon flowers that boost anthocyanin production in the tomatoes. Anthocyanins are the plant pigments responsible for blue and blue-purple colors in plants. And they are shared across all plants with these blue and blue-purple colors, so the addition of purple pigments from a flower isn’t too out of the ordinary since tomatoes already contain similar pigments. (The reddish violet/crimson color of plants in the Amaranthaceae family (beets, amaranth, chard) are from betalin pigments, not anthocyanins, FYI.) Most plant pigments actually have the added bonus of also being highly beneficial for human health as most of them are antioxidants and have other health benefits. The incorporation of anthocyanins boost the nutrient quality of tomato since anthocyanins are considered strong antioxidants. Studies also implicate anthocyanins in reducing blood pressure and heart disease, preventing neurological disease, and slowing cancer growth due to the reduction of free radicals that can damage DNA.

Source: Overview of Plant Pigments, Springer

Now, anthocyanins in tomatoes are not new. Many hybrid and heirloom varieties of tomatoes contain anthocyanins. The tomatoes that already contain anthocyanins are the tomatoes that are often considered “purple” or “black” by seed companies and home gardeners. Like ‘Cherokee Purple’, ‘Black Beauty’, and ‘Black Krim’. However, the anthocyanins in these tomatoes are generally found in low quantities as they are only found in the skin and or the flesh just under the skin. What makes “The Purple Tomato” novel is that it is the only tomato that has the anthocyanin pigment in both the skin and throughout the tomato. Seeing pictures of the tomato, the vibrant purple color goes through the entire tomato and is striking. (It also doesn’t hurt that purple is my favorite color). Due to this purple color throughout the tomato, the fruits have a much higher concentration of anthocyanins than existing cultivars.

Another thing that excites me about The Purple Tomato is that the company claims that is an inbred/open pollinated variety. Meaning that home gardeners can save the seeds from year to year and the anthocyanin traits will continue to be present. This also signals a departure from normal genetically engineered seeds where the traits aren’t as persistent and seed saving isn’t allowed. The company does have some terms and conditions about not selling seeds (from the ones you buy or likely from any you save) and not using them to breed other varieties. But gardeners are free to save seeds and share fruits, plants, and seeds with your local community.

“GMOs” and home gardening

Despite what many people may think, until the release of this tomato there really weren’t any genetically engineered plants available to home gardeners. This marks the first time that a plant has received approval from the US government agencies that control the release of genetically engineered plant for sales directly to home gardeners. Most of the genetically engineered plants have been developed for and are available only to commodity crop (corn, soy, cotton, etc.) and select horticultural crop (papaya, some select squashes, and now Arctic apple) farmers. There’s a highly regulated process and contract procedure for farmers to obtain the seeds or plants that just isn’t practical or cost-effective for the plant developers to market to or make seeds for home gardeners.

Source: UC Davis Biotechnology Program

We’ve written several times about how, until now, there really hasn’t been genetically engineered seeds available to home gardeners, despite what some seed companies would have you believe (here and here). There has unfortunately been a lot of confusion for home gardeners thanks to misguided and/or deceptive marketing practices by certain (heirloom) seed companies that labeled their “Non-GMO certified” seeds and preached about the dangers of genetic engineering to sell more of their seeds even though there have not (until now) been any “GMO” seeds available for companies to even sell to home gardeners. Unfortunately that deceptive marketing created enough fear and fervor that most seed companies had to start labeling their seeds “Non-GMO” just to preserve their sales and cut down on harassment from folks on social media trying to “call them out” for selling GMO seeds.

Not until the release of “The Purple Tomato” has there been a home garden seed that could be labeled “GMO” and warrant companies needing to label something as non-GMO. But still it is only one plant, so is it really necessary? Or is it just a marketing tactic?

Purple Tomato Reception

In cruising through the comment section on articles discussing the new tomato, I’ve been pleasantly surprised to see the positive response that it is receiving from the public. There are lots of comments excited about the prospect of a nutrient-dense genetically engineered crop, lots of excitement about buying the seed, and even excitement about the super purple color of the tomato. The few negative comments about GMOs being “bad” have gotten a lot of pushback. I don’t think this would have happened 5 or 10 years ago.

Of course, some of the pushback is a little misguided. Statements like “all plants are GMO” show a similar lack of understanding of what is actually happening, even though it is offered in good faith. Yes, humanity has guided and shaped the genetics of all of the plants we eat over the centuries and many plants have therefore been “genetically modified” by humans. But genetic engineering is a more rigorous and scientific process. This is also one of the reasons why scientists and government agencies prefer the term “genetically engineered” or “bioengineered” to GMO or genetically modified to clear up confusion.

It does seem like the tide has shifted on public acceptance of genetic engineering where until recently many people viewed the technology with skepticism and fear, thanks mainly to misunderstanding and marketing.

Much of the fear and distrust of genetically engineered plants have been around the addition of genes to make crops resistant to certain herbicides, to produce natural immunity to insects, and other traits to increase yields. Many have wrongly assumed or claimed that this has resulted in increased application of herbicides. While application of some herbicides like glyphosate has increased, it has been at the reduction of much more dangerous herbicides. These crops have often been developed and controlled by large chemical companies that, perhaps not totally incorrectly, the general public distrusts. Plus, unintended consequences like herbicide resistant weeds have caused issues.

But the new Purple Tomato goes beyond this and I think is applauded for many reasons. One – it was made solely to boost nutrition. While there have been previous (mostly unsuccessful) efforts to do this in crops (see the story of Golden Rice), this is really the first time it has been aimed at home gardeners. Two – it isn’t one of those “big scary corporations” doing it. It is a company started by academics to promote plant science and health. Three – while the plants are patented, there aren’t strict and secretive agreements against seed saving and sharing. And four – the express purpose of the plant is to increase the healthy qualities of the plant.

In conclusion

It seems like many people are excited about this new genetically engineered tomato on the market. I know that I am. It seems like the public at large is accepting and excited by this new health-boosted tomato and the technology used to make it.

I know I’ve ordered my seeds, and many others have as well. The seeds aren’t cheap, $20 for 10, but the process to make them isn’t cheap either. I’m looking forward to trying them out in my own garden.

Disclaimer: No payment or reward was received for this article promoting the Purple Tomato and I have no affiliation with the company. Norfolk Healthy Produce didn’t even know it was being written. They probably don’t even know who the Garden Professors are and they definitely don’t know who I am. That being said, if they want to reach out with some free seeds or swag, I wouldn’t be mad at them.

Does Wind Chill Affect Plants?

Over the course of this winter there have been several days when the temperature plummeted after the passage of an Arctic front as strong winds blew frigid air into parts of the United States. It can happen in other parts of the world, too. When this happens, the National Weather Service (NWS) often issues Wind Chill Warnings urging people to bundle up before they head outside into the dangerously cold weather. From time to time I am asked if plants also experience wind chill. This week let’s explore how wind does and does not affect plants.

Birch trees in heavy wind and snow in Hemsedal, Norway, Havardtl, Commons Wikimedia.

What is wind chill?

The Oxford Dictionary defines wind chill as “the cooling effect of wind blowing on a surface”. That is partially correct as a general statement of how the wind makes you feel, but it is lacking as a scientific definition. A better one is “a quantity expressing the effective lowering of the air temperature caused by the wind, especially as affecting the rate of heat loss from an object or human body or as perceived by an exposed person.” The wind-chill index is a calculated index that tries to quantify how a strong wind can remove heat from a human or animal body. A low wind chill indicates that heat is being rapidly removed from the body, potentially resulting in the lowering of internal temperature and the chance of frostbite to extremities like fingers, toes, and noses if directly exposed to the frigid wind.

“Wind chill” is used by the NWS as a way to provide a warning message to people who might be working or playing outside to make sure they are well protected from direct contact with the wind. As a calculated index wind chill cannot be measured directly although there have been some lab experiments in temperature-controlled laboratories that have tried. The formula for calculating wind chill has been changed in the past as science has improved our understanding heat transfer by wind.

Source: RicHard-59, Commons Wikimedia.

How does wind chill work?

When wind blows across a surface, it causes a transfer of energy between the wind, which is at one temperature, to or from the surface which is most likely at a different temperature. If the temperature of the wind is lower than the surface, then heat (which is just a measure of the energy of the molecules at the surface) is stripped from the surface and transferred to the wind. That lowers the energy of the surface and cools it off (note that this is different than evaporative cooling, which is cooling due to evaporation of water from a surface). The faster the wind blows, the quicker the energy is stripped away. In summer, when the ambient air temperature is high, this cooling effect from a breeze off a cooler water body like the ocean may feel pretty good. But in winter, when temperatures are already icy, it may cool off the surface (and by connection, the body beneath the surface) to dangerous levels resulting in frozen cells that are the hallmark of frostbite or hypothermia if the core body temperature is affected.

Trees on the ridge, Gael Varoquaux from Paris, France, Commons Wikimedia

Plants do not generate internal heat and so are generally the same temperature as the air. Because of this, there is no transfer of heat energy between the air and the plants and so the plants would not experience “wind chill.” However, anything that has an internal source of energy, including humans, animals or running engines, could experience a chilling effect as heat is stripped away from the surface by the wind especially if the warm surface is exposed directly to the cold wind. That is why it is important to wear layers to provide protection from the wind when the wind chill is expected to be extreme since it keeps heat from being removed from the skin. Ranchers help protect their livestock in blizzards by creating wind breaks that reduce the wind speed and so limit the impacts of wind chill on their cattle. Newborn calves may be especially susceptible to wind chill on their ears and may be outfitted with earmuffs to protect them from frostbite.

A calf wears adjustable ear muffs called Moo Muffs to protect its ears from frostbite. (WPR Photo courtesy of Holly Poad), published in the Superior Telegram on January 23, 2020.

What other impacts does wind have on plants?

Even though plants do not experience wind chill, that does not mean that there are no impacts from the wind. In addition to transferring heat, wind can also transfer moisture from the plant to the air, desiccating the plants if the humidity of the air is low. This can happen at any temperature as long as there is not much water vapor in the air, but we generally think of it happening at high temperatures because the difference between the water content of the plants is much higher than the water vapor in the air. The difference in humidity, like the difference in temperatures, leads to transfer of water out of the plant and into the air blowing over it. It’s not all bad, though–wind blowing through the plant canopy can be a good thing if it keeps humidity levels near the plant low enough to prevent the development of fungal diseases that thrive on very moist conditions, so gardeners should consider wind conditions in their garden when they determine where to place their plants and what to grow.

Winds can also cause damage to trees and garden plants. I recently read an article that indicated nearly all tree trunks break at the same wind speed of around 90 mph (42 m/s), regardless of species or size. According to the authors, “In a strong wind, a tree may break through one of three mechanisms. Uprooting can occur in rain-moistened ground, or if the tree’s roots are rotten. Alternatively, if the roots can hold, then it becomes the tree trunk that is at risk from breakage – either through torsion or, more commonly, bending.” Of course, damage to tree limbs can cause breakage at weak spots as well at lower wind speeds.

Bent over with the wind (Isle of Wight), Ronald Saunders from Warrington, UK, Commons Wikimedia.

Wind also has beneficial impacts on plants. The gusty nature of wind causes variable forces on tree trunks and plant stems that increase their strength by forcing them to resist the wind. That is one reason why you might not want to stake young trees too tightly, because they need to be able to move in the wind to form strong tapered trunks. Wind that blows all the time in the same direction causes trees and plants to grow in distorted (and sometimes beautiful) ways as their shapes are formed by those constant winds. Wind also provides a way to spread pollen from one tree to another, helping to spread genetic material through a wide area for reproduction.

Pine (Pinus sylvestris) releasing pollen into the wind in Tuntorp, Brastad, Lysekil Municipality, Sweden.

If you are interested in reading more about how wind affects gardens, check out my earlier blog post at https://gardenprofessors.com/who-has-seen-the-wind/.