Post-turkey puzzler

I hope everyone had a great holiday yesterday!  Since I am NOT a shopper, I’m avoiding “Black Friday” and posting another puzzle instead.

Consider this photo:

This is a rhododendron in my own landscape.  The photo was taken in July, though the damage on these new leaves occurred earlier than that.  In Seattle, rhododendron leaf bud break generally occurs in April.

Now consider this problem.  Same plant, different year – and actually a different problem!

So what caused this damage?

Explanations on Monday!

Inspecting nursery plants, part lll

By now you’re probably ready to stand up, brush off your pants, and stretch your back after crawling around looking for surface roots and root crowns.  Not so fast!  There’s one more thing to look for – and to avoid.

Take a look at these two photos:

 

You can easily see the suckers at the base of these trees.  Whether or not they are actually suckers (coming from the roots) or watersprouts (coming from the base of the trunk) doesn’t matter.  Their presence in single trunked species warns of problems underground.  You’ve probably seen landscape trees respond to crown stress by suckering.  In this situation, my diagnosis is that the roots are so stressed (buried too deeply, structurally malformed, etc.) that they are unable to provide enough water to the crown.  Thus, the plant responds by creating a shorter crown (the suckers) which is easier to keep supplied with water.

In both of the above cases, these were the only individuals of their species in the nursery that were suckering.  That makes it easy to avoid purchasing them and their stressed root systems.

This is not such a problem with species that tend to form thickets, like our native vine maple (Acer circinatum) below:

Bottom line:  know the natural habit of your trees and shrubs before you buy them.  If they are single trunked species, don’t be a sucker – avoid suckers!

Advice Requested!

Greetings, all!

I am not a tree-care expert, having invested most of my mental capital into herbaceous plant stuff.  But I know enough to be dangerous: spiraling/strangling roots and narrow crotch angles are bad news. But at what point do they become “unfixable”? So I’m asking my illustrious colleagues and diligent readers (a.k.a “all y’all) for advice.

We have a lovely specimen in our campus Horticulture Garden…Acer ‘White Tigress’ – a hybrid between A. davidii and A. tegmentosum – also known as snake-bark maple.  Probably been in the ground for 18 years or so. Lovely buttery fall color, gorgeous stripey bark.

This tree, as we say in Georgia, “has more problems than a show dog.”

Scroll on down…


Bit of constriction there, mid-way up.


Some interesting crotch angles, too…

But here’s the kicker (I can hear Linda hooting it up from here…)

This poor gal is obviously a “what not to do” teaching tool.

But the question is:
Can this tree be saved? Discuss.

Friday Can O’ Worms

I was pleased to see that at least two of you dug into the literature over the weekend to read these papers!  (I can still remember the first time as a Master’s student when I was assigned a journal paper to review.  I had NO idea what, exactly, I was supposed to be doing.  It took a long time to figure it out.)

In any case, kudos to Jimbo and Diana for their thoughtful comments – and for zooming in on the problems.  Indeed, Jeff and I conclude there is likely a fertilizer effect on the plants – and a healthy plant is better able to resist insects.  Secondly, the speculation at the end of the paper regarding root uptake of phenolics from the vermicompost – compounds that weren’t even measured, much less monitored for uptake – is totally unsubstantiated and in fact is not feasible, given root physiology.  I’ve pasted my draft to the journal editors below, which explains this a bit more.  (Jeff also has some choice things to say, and I’ve added his comments as well.)

From LCS:  “I recently read the article by Edwards et al. entitled “Suppression of green peach aphid (Myzus persicae) (Sulz.), citrus mealybug (Planococcus citri) (Risso), and two spotted spider mite (Tetranychus urticae) (Koch.) attacks on tomatoes and cucumbers by aqueous extracts from vermicomposts” (29(1): 80-93).

“The article presents evidence that the use of vermicompost teas increased the resistance to damage from these pests.  As the authors state “there are many reports in the literature of organic nutrient sources decreasing numbers of pest arthropods.”  This seems a logical conclusion given that the authors have provided an additional nutrient source to their treated plants (vermicompost extract) that was not available to the control plants (which were drenched with water).  The treated plants were better able to manufacture anti-herbivore compounds as a result.

“Yet the authors then venture into unsupported speculation that this resistance was due to the uptake and transport of water-soluble phenols by the roots and into the leaves of these plants.  In the authors’ words:  “these diverse results all point to the probability that water-soluble phenols, extracted from the vermicompost during aquatic extraction, taken up into plants from soil receiving drenches of vermicompost aqueous extracts, could be the most likely mechanisms by which vermicompost aqueous extracts can suppress pest attacks.”

“Not only are there no data or other direct evidence to support this speculation, but the likelihood of such uptake is highly unlikely if not impossible.  The water/nutrient uptake mechanism in plant roots is cellularly regulated, particularly at the endodermis, where all solutes must pass through cell membranes prior to entering the vascular tissue.  No such transport has ever been documented in the literature, though the authors report “There have also been suggestions of these effects being due to the uptake into plants of phenols from organic manures (Ravi et al., 2006).”  This latter paper, however, measures the presence of phenols and their associated enzymes in the plant tissues, not the uptake of soluble phenolics.  Plant physiologists and biochemists have long known that plants are capable of synthesizing a wide variety of phenolic compounds used to ameliorate abiotic and biotic environmental stresses.  I am surprised that the authors did not discuss their theory with plant scientists at their institutions.

“It is disappointing that the authors were not discouraged during the peer-review process from making unsubstantiated, fantastic claims about the mechanisms underlying their research results. ”

From Jeff:  “Though we do not discount the possibility that compounds may have been present in the vermicompost that could have been taken up by the plant’s roots, we think it much more likely that there was a fertilization effect which caused the plants to grow more rapidly and/or which allowed the plant to defend itself more effectively using its own defensive mechanisms. The authors of this paper discount this effect by stating that “It could not be caused by uptake of soluble nutrients since all of the experimental treatments were supplied regularly with all the nutrients that they needed from Peter’s Nutrient Solution, which was applied to the experimental plants three times a week.” but do not include any evidence to back this statement up. This is a fatal flaw. In fact, the authors don’t even provide any data regarding the concentration of nutrients that were added. Simply stating the analysis of the Peter’s fertilizer which was used provides us little data as they could have mixed this up at any concentration before applying. Was nitrogen applied at 10ppm? 600ppm? Likewise, though the authors tell us the concentration of nutrients in the vermicompost used, no indication of the amount of nutrition in the compost extracts is given. If these analyses of nutrient content turned out to be too expensive the authors could simply have grown additional plants without exposing them to the insect pests. By then comparing plants which had been grown with extracts to those grown without the effects of the extracts on growth would have been made obvious. Another significant problem with this paper was the lack of information regarding the variety of tomato which was grown. Tomatoes have various resistance mechanisms to defend themselves from insect pests including, but not limited to, both glandular and non-glandular trichomes. Many papers over the years have shown that the density and chemical composition of these trichomes is affected by both the plants parentage and by nutrient concentration.

“In short, it is difficult to believe that even a novice researcher would provide the paucity of information and experimental data that these researchers did which might elucidate the presence or absence of a fertilization effect. The fact that the first author of this study is a seasoned researcher gives the impression that the objectivity of this research has been compromised. This impression is only strengthened when we discover, at the end of the paper, that this research was funded as a subcontract to a grant for small businesses, in this case the Oregon Soil Corporation. It seems logical to assume that this paper was published as a gimmick to promote the business interests of a producer of vermicompost rather than for any furthering of science. You have done your journal a great disservice by publishing it.”

Friday puzzler revealed!

Lots of discussion about the mysterious white streaking on the hedge.  The pictures below show a little more detail than those on Friday:

As you can see, Jimbo was on the right track when he suggested the hedge might be near a parking lot.  But it’s the heat escaping from the engine compartments that’s been causing the damage. 

(I am now committed to find some good photos of urine damage by dogs, donkeys, or drunken frat boys!)

Friday puzzler addendum

OK, I know we gave you a tough assignment for the weekend, so I want to post something fun as well.  (Think of this as dessert after your healthy meal!)  Take a look at the photos below:

This hedge is regularly sheared and no one part of it has been maintained any differently than another part.  Both sections of the hedge face east, and the damage is anywhere from 2 to 4 feet from the ground.  What do you think has caused the damage?

Explanatory photos reveal all on Monday!

Friday puzzler: Opening a can of worms

Part of being a Garden Professor is evaluating, interpreting, and passing on good science to the rest of the gardening world.  I was recently made aware of two articles soon to be published in Crop Protection and Pedobiologia, both peer-reviewed, scientific journals.  (You can download these articles just by clicking on the highlighted journal names.)

Briefly, what one expects from a scientific article is (1) a statement of the research question (the hypothesis) to be investigated, (2) a clear description of the materials used and procedures followed, (3) a listing of the results, along with their statistical significance, and (4) a discussion of the results, including whether they supported the hypothesis.

    

Both articles focus on the use of vermicompost teas as a way of reducing pest damage on greenhouse grown crops.  If you’re not familiar with this product, it’s made using worm castings and water in an aerated system. The researchers conducted one large experiment and divided the results into two parts for publication. Therefore, the materials and procedures were the same for both articles, and you’ll also see that the conclusions are likewise the same.  (My point – you really only need to read one of these articles.)

 

I sent these articles and my evaluations to my GP colleagues; at least two of us will be sending letters to the editors of both journals expressing our concerns.  Jeff thought these articles provided a great opportunity for our blog readers to look over our shoulders and see what we do.  We don’t question the results that the investigators got, nor do we have any argument with the statistical analysis.  We do question the authors’ interpretation of the results.

So here is your assignment for the weekend:

(1)  Read the methods section carefully to understand the differences between the treatments (the vermicompost tea addition) and the control. Can you think of an alternative reason for the results the researchers found?
2)  What additional flaw do you see in the discussion section in terms of the proposed mechanism of protection conferred by the vermicompost tea treatment?

On Monday, I’ll post the draft of the letter that we’ve drafted to the journals.

Oh, and if you have any questions, please post them!  We will answer them the best we can.

Soap and Deer

Short post today — Linda appears to have transmitted her illness electronically over a couple of thousand miles — Thanks Linda!

I was reminded yesterday that it’s almost time for gardeners to start worrying about winter deer damage. With that in mind I thought I’d share with you my favorite research article on the subject.  It’s a little paper by Michael Fargione and Michael Richmond and published about 18 years ago.  You can find it here.

This paper attempts to establish how repellent bars of soap are to deer and comes up with some very interesting conclusions.  The first thing you should know is that no one type of soap appears to be better than another.  The second thing you should know is that soap does appear to stop deer from feeding around the soap — but the best you can hope for is a radius of protection of about a meter from the bar of soap itself — Can you imagine what that would look like if you were trying to protect the lower limbs of a large tree?  And finally, bar soap appears to attract voles.  Based on my reading, and my limited experience, I’ve found that almost everything that people say repels deer does repel deer — human hair, peeing around a tree, predator urine, dried blood — the issue is how long these repellents stay effective and how effective they are when the deer get really hungry.  The most effective commercial deer repellents tend to have “putrescent egg solids” in then (rotten eggs) — I once had a graduate student who needed to protect some hazelnuts from deer and she found that a mixture of a few eggs (2-4) mixed in a quart of water and sprayed onto the trees worked pretty well — and no, the eggs weren’t rotten.  This mixture should be sprayed about once every two weeks if possible.

Inspecting nursery plants, part ll

Well, I’m recovering from this simply horrific chest cold or whatever it is and feeling brain function returning.  The last time we were at our virtual nursery, we were looking for root flare and inspecting the trunk for damage from improper bagging.  Since we’re already down on our hands and knees, let’s consider roots.  In general, you really don’t want to SEE roots, except where they meet the trunk (the root flare).  The presence of coyly crossed “knees” in this photo is a clear indicator of a plant that wasn’t potted up quickly enough:

Likewise, while the fused, circling woody root mass in this next photo might be aesthetically interesting, it sure doesn’t make a functional root system:

It’s pretty easy to avoid these types of plants, because you can see the root problems before purchasing.  The hidden root problems, such as those I’ve shown in earlier posts, are tough to find until (or if) you take all the extraneous stuff off of the root ball.

Finally, there is a new production practice that really fries my potatoes.  What really makes me angry is that these trees had absolutely LOVELY roots – a nice flare, woody roots spreading radially – and then they were butchered – and left unprotected:

 

I can think of no legitimate reason for this practice.  I’ll be curious to hear my colleagues’ thoughts, as well as those from the blogosphere.

Compost Tea? How About Compost Pee!

My news tab in Firefox is the BBC “latest headlines” page. It’s a great place to get pretty darn unbiased news plus the U.K. equivalent of “News of the Weird”.  SO, relative to our ongoing discussion of composting…here’s a story ripped directly from the BBC headlines. Follow the link for a video (interview, that is).

Disclaimerage: I nor any of the other Garden Professors endorse this activity, nor any claims as to its usefulness, scientific relevancy, harrumph harrumph, etc,. etc,. etc. We do, however, fully endorse garden-related humor!

********

Pee To Help Make Your Garden Grow

Gardeners at a National Trust property in Cambridgeshire are urging people to relieve themselves outdoors to help gardens grow greener.

A three-metre long “pee bale” has been installed at Wimpole Hall.

Head gardener Philip Whaites is urging his male colleagues to pee on the straw bale to activate the composting process on the estate’s compost heap.

He said the “pee bale” is only in use out of visitor hours, since “we don’t want to scare the public”.

He said: “For eight weeks now, male members of our garden and estate teams have been using the outdoor straw bale when nature calls. The pee bale is excellent matter to add to our compost heap to stimulate the composting process; and with over 400 acres of gardens and parkland to utilise compost, we need all the help we can get.

“There are obvious logistical benefits to limiting it to male members of the team, but also male pee is preferable to women’s, as the male stuff is apparently less acidic.”

By the end of the year, it was calculated that the 10 men from the 70-strong garden and estates team will make more 1,000 individual trips to the pee bale, contributing towards the compost for the estate. The estate said it will have saved up to 30% of its daily water use by not having to flush the loo so many times.

Rosemary Hooper, Wimpole estate’s in-house master composter, said: “Most people can compost in some way in their own gardens. Peeing on a compost heap activates the composting process, helps to produce a ready supply of lovely organic matter to add back to the garden.

“Adding a little pee just helps get it all going; it’s totally safe and a bit of fun too.”

Story from BBC NEWS:
http://news.bbc.co.uk/go/pr/fr/-/2/hi/uk_news/england/cambridgeshire/8357134.stm

Published: 2009/11/13 00:40:21 GMT
© BBC MMIX