The Government In Your Yard

This year Pinellas county in Florida banned the use and sale of nitrogen and phosphorus fertilizers for lawns between June 1 and September 30.  Is that a good idea?  On the surface it seems like a great idea because it should reduce the amount of nitrogen and phosphorus which reach streams, lakes, ponds and rivers and cause algal bloom and destruction of water habitats.  On the other hand a PROPERLY fertilized lawn is less likely to have nutrient rich runoff (because of a more expansive root system.)  If this ban inadvertently stops people from properly fertilizing there is the possibility that the problem could be made worse.

I’m no fan of heavy fertilizer use by homeowners — I loath the practices of many lawn care companies which includes pesticide and fertilizer applications as many as 5 times a year — but the truth of the matter is that grass actually does a good job of grabbing nutrients that are applied to it because it has such a dense root system.  Crops like corn and wheat, on the other hand, don’t have such a dense root system.  I recently read a paper stating that, worldwide, only about 33% of the nitrogen applied to crops is actually used by those crops (this is referred to as NUE or Nutrient Use Efficiency).  A recent graduate student of mine found that the NUE for Hazelnuts is actually well below that.

My personal preference for lawns is that we start to do what was once common back in the ’50s and before — plant clover with your grass.  Believe it or not you can get an amazingly dense lawn that way.  The clover will provide much of the nutrition that the grass needs — and it’s not, as of yet, considered a noxious weed.  I also like the idea of planting leguminous trees, like black locust (I know some of you see this as a weed — it can be a nice tree too) in turf plots, reason being abscized black locust leaves have high concentrations of nitrogen — over two percent — unlike the leaves of things like maples and oaks.  Of course it’s also possible for the nutrients from clover or the leaves from black locust to end up where they shouldn’t, but because of their slow decomposition we hope that nutrients running off from these sources would be less of a problem.

Anyway, my final thought — Why couldn’t we legislate that all grass seed include some clover or that a certain number of leguminous trees be planted near turf plots rather than trying to control the use of fertilizers?

My summer vacation

I’m following Holly’s lead and slipping into fantasyland today.  Though this part of the country has no snow, it is a typical cool, misty and gray winter morning in Seattle.  So I’m going to a happy place and reminiscing about my summer vacation to Sechelt, British Columbia.

Sechelt (pronounced like “seashell” with a “t” at the end) is a lovely place full of wonderful people (and great gardeners!), but I’m going to focus on the coastal rock gardens at Smuggler’s Cove Marine Provincial Park.  We visited on a day much like the one I’m experiencing now, so there weren’t many visitors.  All the better for us.

Since my interests trend towards plant adaptations to harsh environments, this rocky, salt-sprayed landscape naturally drew my eye.  Trees colonize the bare rock, rooting along cracks and fractures.

Even though we were past the flowering season, these natural gardens were still striking with their miniature plants.  Many of these are cushion formers, and together they formed living patchworks.

And there were still a few wildflowers left as well.

 

Hot and dry in the summer, constantly sprayed with salt, and living on the thinnest of soils, these rock gardens nevertheless have a rich diversity of plant and insect life.  And all without vitamin B-1, compost tea, Epsom salts, or any of the other products aggressively marketed to the gardening world…truly amazing.

So much for my happy summer vacation

It figures.  After I write a happy post I get an email question that brings me back to reality.  I plan on sharing a little more about the question – and my answer – with you later, but I’m going to give you some homework.  Let’s see what you can find out about these topics:

International Ag Labs

High Brix Gardens

Reams’ Biological Theory of Ionization

Hint: they are all interrelated.  Post your comments on the blog and let’s see where we go with the discussion.

The Glories of The Winter Greenhouse

I’m a Southerner. With a capital “S”.  Which is why I am Suffering, with another capital “S”. Here in the Blue Ridge mountains of western Virginia, we have officially surpassed Anchorage and Denver in total snowfall for the season. Today’s batch adds up to 24″ on the ground at our farm.


Blueberries in the snow. If one more person says “Probably good for all the insect problems,” I’m going to get violent.

The chickens are not happy. They’ve been cooped up (ha! I didn’t really mean to do that!) for 10 days straight. I myself suffer from cabin fever, limp hair, seasonal depression, and a persistent cough.


Hell no, we won’t go!

What keeps me from going totally nuts? Only the best $12,000 ever spent – no,no, not granite counter tops…it’s our very own greenhouse. This modest 24′ x 48′ polycarbonate sheet hoop house may not resemble a Victorian conservatory (you can get one of those beauties here), but it works like a champ.  Yes, we have greenhouses on campus for research and teaching, but that’s work; and pet plants are frowned upon.

Nothing beats your own private winter hideaway. My plant-diva-friend Elissa uses her crowded greenhouse for not only her immense plant collection, but also a festive (if cramped) happy hour.

As sleet pelts the roof, I’m surrounded by green: tropical plants dug up from the garden before frost and those “pets in pots” accumulated from hither and yon.  The humidity is wonderful – I can hear my skin go “aaahhhh” after a couple of hours.


Herd o’ Agaves and succulents. They’re perfectly happy with the cool temperatures – several are blooming.

I’ve dreamed of one for years; then finally took the jump 16 months ago. Again, it’s nothing a homeowner’s association would ever approve of; just a commercial-grade, heavy duty, Quonset-type production house. Stylistic concerns were sacrificed for square footage. The most common complaint from home greenhouse owners is “I wish I had built a bigger one.”

The other concern is heating costs. It has a propane heater, and propane’s not cheap, nor environmentally friendly. But we run it pretty darn cold – around 48 F night temperatures, which certainly helps. Are the tropicals thrilled? Not really, but they’re alive and hanging in there (however, the begonias are really grumpy right now).

Some PVC pipe + overhead misting + heating mat = broccoli spinach, and basil seedlings, happily germinating at a 75 F soil temperature, despite an air temperature below 50 F. Basil?! Yes, I realize I’m totally jumping the gun timing-wise here, made worse by the fact that I teach both greenhouse management and ornamental plant production (do as I say, not as I do!).

Yep, more fun than you can shake a shovel at!
I’ll take your questions, comments, and snowballs now…

A rose by any other name…

This past week I got to spend three days doing one of my favorite things; talking about conifers.  Wednesday I was a last-minute guest lecturer for a landscape design class and Thursday and Friday I did my ‘Conifers for Connoisseurs’ talk for our MSU Extension ‘Plants of Distinction’ program.  One of my favorite conifers and one I often recommend as a large specimen tree is Alaska yellow-cedar (the name I learned in Mr. Chance’s Botany class at Olympia High School) or Nootka false cypress (the usual common name for the tree in this part of the world).  Notice that I didn’t give a scientific name, like a good garden professor should.  The reason?  I’m not 100% sure what the scientific name for Alaska yellow cedar is any more.

 

Xanthocyparis nootkatensis at Daisy Hill Farm, DeWitt, MI

Prior to 2000 it would have been easy: Chamaecyparis nootkatensis.   Then a team of international scientists including members of the Kew Royal Botanic Gardens and the Missouri Botanical Garden discovered a rare conifer in northern Vietnam, which was previously unknown to science. The new species was described in a 2002 article by Farjon et al as Xanthocyparis vietnamensis.  A conifer still unknown to science at the end of the 20th Century, that’s pretty cool.  But, in addition to describing and naming the new species, the authors’ also reclassified Chamaecyparis nootkatensis with the new species as Xanthocyparis nootkatensis.  While this news was mildly disappointing to those of us who love the tree and thought Chamaecyparis nootkatensis was about the coolest scientific name ever, the name change was not entirely surprising.  Within the genus Chamaecyparis, nootkatensis was always the proverbial red-headed step-child.  At one point the species had been grouped in the genus Cupressus.  The change to Xanthocyparis also required a change for Leyland cypress, an intergeneric hybrid between Alaska yellow cedar and Monterey cypress (Cupressus macrocarpa).  Under the new nomenclature ×Cupressocyparis leylandii becomes  × Cuprocyparis leylandii. 

Now, as if all this weren’t confusing enough, subsequent work by Damon Little based on molecular markers groups all of the Cupressus species in North America and the two Xanthocyparis species under one genus, Callitropsis.  Little et al’s re-classification and rejoinder by Mill and Farjon (2005) demonstrate the schism which has developed between taxonmists that rely heavily of cladisitcs and molecular tools and those that rely on morphology and evolutionary relationships.  Their debates are far testier than any barbs traded between Linda and the Brothers Horvath.  Check out this link for a taste of the action:

http://urhomology.blogspot.com/2009/03/myths-that-evolutionary-taxonomists.html

 

Xanthocyparis nootkatensis at MSU Horticultural Gardens

So what about us poor horticulturists and foresters who just want to know what to call the damn thing?  I suspect the taxonomic battle lines will deepen before anyone offers a peace offering.  And this will extend far beyond Xanthocyparis (syn. Callitropsis).  Get used to seeing lots of synonyms next to scientific names in the future.  Remember when you took your first Botany class and learned we used scientific names to eliminate confusion over common names?  Sigh… Alaska yellow-cedar sounds pretty good to me.

Farjon, A., N.T. Hiep, D.K. Harder, P.K. Loc, and L. Averyonov.  2002.  A new genus and species in Cupressaceae (Coniferales) from northern Vietnam, Xanthocyparis vietnamensis. NOVON 12:179-189.

 Little, D.P., A.E. Schwarzbach, R.P. Adams, and C.-F. Hsieh. 2004. The circumscription and phylogenetic relationships of Callitropsis and the newly described genus Xanthocyparis (Cupressaceae). American Journal of Botany 91(11): 1872-1881

Mill, Robert R. and Farjon, Aljos. 2006. Proposal to conserve the name Xanthocyparis against Callitropsis Oerst. (Cupressaceeae). Taxon 55(1):229-231

<

Friday puzzle untangled

Well, either the puzzle was too easy or you guys are too smart!  Deb, Christopher, Lori, Foy, Jim, and Hap go to the head of the class – it was, indeed, staking material left on way too long.  Here’s a photo from over 10 years ago.  I’m not sure this is the very same tree, but it’s from the same parking lot/torture chamber:

I “liberated” these trees with my handy wire-cutters (never leave home without them) shortly after taking the pictures.  Several take-home lessons from this example:

1)  Plastic tubing does not protect bark from girdling wire injury

2)  Parking lot trees, even in very upscale shopping malls, are abysmally managed

3)  Trees are amazingly resilient

Have a good week!

Friday quiz…better late than never!

As you know, I wanted to get something intriguing for this week’s puzzler from the NW Flower and Garden Show.  Alas, there was nothing that jumped out at me, so I’m digging into my photo archives.

Here is a recent photo from a parking lot tree.  About four feet up the trunk, I found this interesting growth.  No, I don’t know what the tree species is because (a) it wasn’t in leaf and (b) I’m a taxonomy klutz.  But I can assure you that the odd bark morphology has nothing to do with genetic identity.

I can also assure you that there is no foreign material under the bark that’s causing this phenomenon.  The question:  what DID cause it?

The answer – and a revealing photo – on Monday!

Friday quiz…yes it’s coming

As you might know, I’ve been at the NW Flower and Garden Show this past week, and yesterday I had two seminars to give.  So I didn’t have a chance to post a quiz, and this morning I’m back over for a few hours before I’m done.

I’m hoping to find an interesting Garden Prof question topic at the show, so I’m taking the camera today.  If I can’t, I have a backup.  But I promise there will be a question up by today!

Plant Patents

I love patents.  In fact, I once wrote a novel based on a patent — It was called Patent 22 — If you look this patent up you’ll just find a piece of paper from 1915 which says, essentially, that a search was made for the patent but that it couldn’t be found.  No one wanted to publish it — and reading it now I do realize that it does need some serious work.  Still, I think this little tidbit gives you a little bit of an idea about my interest in patents.  (The paper on file at the patent office is below):

Anyway, here’s the thing that people don’t know.  There are three ways to protect a plant from someone else “stealing” it: Plant Patents, The Plant Variety Protection Act, or a Utility Patent (which is what you or I usually think of when we think of a patent).  The Plant Patent Act passed in 1931 and it is the way that most plants are protected today.  Plants like the Honeycrisp apple which are propagated vegetatively (using cuttings or grafting) are usually protected with this type of patent.  The second type of protection is the Plant Variety Protection Act of 1970.  This Act lets you protect seed propagated plants.  With these two types of protection you wouldn’t think that any other type would be needed — but the Supreme Court has twice ruled that plants can be protected using Utility patents (once in the 1980s and once in the early 2000s).  So, what is the problem with that?  Well, basically, the problem with that is that, while the other ways to protect plants allow for the use of those plants in research or for breeding and farming, using a utility patent prevents anyone from using the patented plant from doing anything with that plant without permission from the patent holder.  And, basically, an entire species of plant can be patented — it has been done before with a bean that someone brought from Mexico into the US — he cornered the market on the bean and noone could sell or breed the bean without his OK.  Sounds insane doesn’t it?  Just my first thought on a cold Thursday morning.

Water droplets and burned leaves, continued

A few weeks ago (January 20 – “Help, help, the sky is falling”) I started a discussion about an article appearing in the peer-reviewed journal New Phytologist.  That posting focused on the methodology and results in the paper.  Today let’s take a look at the authors’ underlying arguments (their introduction to the study) and their conclusions.

1)  The authors’ premise is that “laymen and professionals alike commonly believe water drops on plants after rain or watering can cause leaf burn in sunshine.”  To support this statement, the authors surveyed “relevant topical websites.”  They found 29 sites (primarily .org and .com, but no .edu sites) that agreed with this statement and 9 sites (including 4 .edu sites) that disagreed.  How this translates to “professionals” believing that water drops cause sunburned leaves is unclear, especially when all the .edu sites surveyed disagreed.  In my opinion, the authors should have surveyed ONLY .edu sites to test their hypothesis about what professionals believe.  And why only 38 sites?  We’re not told how or why these sites were selected.

2)  Building on this shaky premise, the authors then address the apparently popular concern that water drops can cause forest fires.  They survey “the forestry literature” to find “the prevailing opinion is that forest fires can be sparked by intense sunlight focused by water drops on dried-out vegetation (Table S3).”  Table S3 is not included in the online article but is in a supplementary file.  Happily, it is short enough that I can paste it in here (so you can find the sites yourself):

Table S3 Survey of websites discussing the possibility of forest fires due to sunlight focused by water drops. We posed the question: “Can sunlit water drops spark forest fires?” The rate of the ’yes’ answer was 3 / 3 = 100%.

URL

Title of article

Answer

yes

no

http://fotozz.hu/fotot_megmutat?Foto_ID=30936

Forest fire and water drops

+

 

http://mek.oszk.hu/01200/01214/01214.pdf

Radó (2001) Role of vegetation in protection of the environment

+

 

http://wiki.answers.com/Q/Whether_presence_of_water_cause_forest_fire

Whether presence of water cause forest fire?

+

 

I must say this took my breath away.  This is not a survey of the “forestry literature.”  It is 3 websites, two in Hungarian and one in English, chosen for unknown reasons.  The first site is actually a stock photo website with comments about pictures of water drops on leaves.  The second is entirely in Hungarian and is not in the scientific databases.  The third is in English, and here’s what “wiki answers” has to say:

“When I was a youngster and could not afford a magnifying glass, I would twist a piece of wire around a pencil so that it formed a round piece at the end of the wire. I would then dip the rounded end into water so that a blob of water made a very small magnifying glass. I suspect that when it has rained this same effect is left on leaves, millions of tiny magnifying glasses all concentrating the suns rays onto what they happen to land on. Just one tiny focal point of a rain drop could possibly generate enough heat to start a fire.  Robert”

[Note to the editors at New Phytologist:  What I really want to know is how this kind of junk science can slip through peer review.  It is embarrassing.]

3)  The authors (none of them plant scientists) nevertheless address plant ecophysiology in the discussion:  “If, after rain, leaf blades were covered by a water film, they could not breathe, because gas exchange through the stomata would be blocked…To avoid this, plants evolved efficient water-repelling and water-channeling structures which build up and roll off rain drops. For example, water drops easily roll off the highly hydrophobic leaves of lotus, Ginkgo (Fig. 2b), and floating fern (Fig. 3b,c) if leaves are tilted or shaken.”

Two comments here:  the stomata through which terrestrial plants “breathe” are primarily on the underside of the leaves.  It is true that floating aquatic plants have most of the stomata on the upper leaf surface.  Which leads me to ask…if water drops easily roll off of floating fern leaves, then how did the researchers do the following?  “…the experiment was concluded by cutting and scanning several Salvinia leaves – still holding water drops – in the laboratory in order to document their sunburn.”

4)  The conclusion of a research article, as any Garden Professor knows, is meant to summarize the results of the experiment.  Yet the last paragraph of the conclusion reads as follows:  “Lastly, a similar phenomenon might occur when water droplets accumulate on dry vegetation (e.g. straw, hay, fallen leaves, parched grass, brush-wood) after rain. If the focal region of drops falls exactly on the dry plant surface, the intensely focused sunlight could theoretically spark a fire. However, the likelihood of this is considerably reduced by the fact that after rain the originally dry vegetation becomes wet, and as it dries water drops also evaporate. Thus, claims of fires induced by sunlit water drops on vegetation should also be treated with a grain of salt.”

Even though the authors seem to discount the possibility of these scenarios, they did NOT test the ability of water drops to cause combustion.  This speculation really belongs in the discussion, if anywhere at all.  So why is does it make up 50% of the conclusion?  The cynic in me says it’s because 90% of the people looking at this article will read only the abstract and the conclusion – and this is especially true of nonscientists.  It’s a great way to get immediate attention, even with a complete lack of supporting evidence.

Don’t believe me?  Just type in “water drops cause forest fires” without the quotes into Google.  146,000 hits, and all the top ones reference this article.