One of the most misunderstood gardening practices is mulching. There is much mulch misinformation in horticulture books, web pages and even extension leaflets. First,what is Mulch? Mulch is any substance the covers the soil surface. Mulch can be inorganic (rock), hydrocarbon (plastic) or carbon based (chips, bark etc.) While any material applied to the soil surface could be considered mulch, the benefits of mulching especially to woody plants are greatest from fresh woody chippings of tree trimmings–so called “arborist chips” applied fresh—not composted. Annual plants such as vegetable plants are often mulched as well but usually with materials that rapidly break down such as straw or some mixtures of shavings and manures. These materials are easily incorporated later when the next crop is planted. For woody plants such as trees and shrubs, mulches that persist for a longer time are desirable. Plastic mulches used in agriculture are not suited to shade trees or other landscape uses nor are landscape fabrics. Each of these deteriorate into landscape trash rapidly and do not benefit soils under the mulch layer. Stone mulches while used extensively in the South west US are not as beneficial to soils as arborist chips.
Why use mulches anyway? Mulches support healthy tree and woody plant growth in landscapes around the world. They increase soil organic matter, the diversity and functionality of the soil food web (particularly saprophytic fungi), support mycorrhizal partners of woody plants, supply nutrients and suppress weeds. Thick mulch layers increase root development, and help to suppress soil borne plant pathogens. The breakdown of woody mulches on the soil surface encourages development of soil structure, increased water infiltration, water holding capacity, and nutrient holding capacity of underlying soil layers. Well mulched trees and shrubs grow healthfully without fertilization.
So why not mulch with compost? Compost is not suited for use as a mulch around trees and shrubs. Compost is often screened and is of fine texture. Fine texture presents a few problems. Fine compost will make hydraulic conductivity with soil and allow for water to evaporate through the compost/soil interface. Thus the moisture savings we see under arborist chips will not be the same under compost. Compost is also able to allow weeds to germinate in it so the weed suppression effects of a mulch will also be lost. Composts applied as mulch can make an interface between the soil surface and the mulch layer which should always be avoided as it will impede water movement through the interface.
Another important reason for not mulching with compost is that compost is poor nutritionally for soil microbes. Composts have most of their active or labile carbon burned away during the composting process by the rapid respiration of microbes. The compost is turned aerated and kept moist until the process stops at this point it has some level of maturity. It won’t reheat when turned. The microbes have consumed most of the available carbon for their own growth and respiration in the compost pile, none of this remains for microbes in the landscape. Fresh arborists chips are full of labile carbon. When laid over the soil surface spores of fungi invade and they begin to uses this carbon for their own growth as an energy sources. Placing fresh wood chips on the soil surface is feeding the soil microbiology at the soil-mulch interface. In time (a few years) these processes go deeper in the soil and begin to feed the soil food web beneath the mulch layer. The diversity of fungi increases, mycorrhizae begin to transfer mulch nutrients to their woody hosts and pathogens are destroyed by enzymes that leach from the fungi infested wood chips. While composts supply minerals (all that is left of the feedstock after composting) they can’t supply the labile carbon as a source for microbes. Fresh arborists chips do all this and are thus the best mulch for woody plants.
There has been some concern lately for using mulches that are recycled as yardwastes. This concerns me as well because gardeners may be disposing of dead plants in their greenwaste cans. In theory, pathogens could be coming through the greenwaste stream to gardeners. Getting tree chips is best because there is little likelihood for soil borne pathogens since the materials are chipped branches. There is some possibility of wilt diseases (Verticillium spp.) surviving in arborists chips but little research has established that the pathogen can infect especially if the chips are stockpiled for a short time. In my own research we showed that pathogens, weeds an insects had very short survival times in stockpiled (not turned) piles of greenwaste. There is very little chance of pathogens coming to your garden from arborist chips and the benefits to your soil and perennial plants are worth the effort to get a “chip drop” from your local tree care company.
Literature
Chalker-Scott, L. 2007. Impact of Mulches on Landscape Plants and the Environment — A review. J. Environ. Hort. 25(4) 239-249.
Chalker-Scott, L., and A. J. Downer 2020. Soil Myth Busting for Extension Educators: Reviewing the Literature on Soil Nutrition. J. of the NACAA 13(2): https://www.nacaa.com/journal/index.php?jid=1134&fbclid=IwAR0cPfBl3V-3car-RPeEmlqzwW8bPEOPgND07xMTNgCOa5GkuSWtdD5WzF8
Downer, A.J., and B.A. Faber. 2019. Mulches for Landscapes UCANR publication #8672
Downer, A.J., D. Crohn, B. Faber, O. Daugovish, J.O. Becker, J.A. Menge, and M. J. Mochizuki. 2008. Survival of plant pathogens in static piles of ground green waste. Phytopathology 98: 574-554.
Downer, A.J., J.A. Menge, and E Pond. 2001. Association of cellulytic enzyme activities in eucalyptus mulches with biological control of Phytophthora cinnamomi Rands. Phytopathology: 91 847-855
Downer, J. and D. Hodel. 2001. The effect of mulching and turfgrass on growth and establishment of Syagrus romanzoffiana (Cham.) Becc., Washingtonia robusta H.Wendl. and Archontophoenix cunninhamiana (H.Wendl.)H. Wendl. & Drude in the landscape. Scientia Horticulturae: 87:85-92