Why seasonal climate forecasts aren’t always accurate

Do you use predictions of seasonal climate to plan your garden work? Or are you frustrated because they don’t seem to be very useful? I’ve been getting a lot of complaints this year about how bad the climate forecast for winter was because what we have seen so far has not matched the predictions in many parts of the country. Let me take a few minutes to explain how they are made and what you can learn from them.

First, let me specify that I am not talking about long-range climate forecasts for 50 years down the road. Nor am I talking about weather forecasts for the next week. I am talking about the forecasts that cover the period from about 15 days to 3 months, which climatologists call the “seasonal to sub-seasonal forecasts”. These are the kinds of forecasts that say “Winter is likely to be warmer and drier than normal” or “Get ready for a big warm-up in the next month.” They can be useful in planning garden work a few weeks ahead, but they come with caveats.

“Glory of the Snow” in the snow. Taken by User:Ruhrfisch April 2006, Commons Wikimedia.

Unlike weather forecasts, there are only a few models that predict climate in the monthly to seasonal time period. That is because we can’t just run the weather models out four to twelve weeks and expect to get anything like real weather. The weather models are built to handle short time steps and detailed information about temperatures, rainfall, and all the other factors that make up your daily weather, and to do it fast enough that you can actually use the forecast to decide when to wear your raincoat. They are useful out to about a week, but then their accuracy starts to break down because there are too many things going on around the globe to capture accurately over time, and so the short-term models tend to drift away from reality the farther from “now” you get. Models for monthly to seasonal climate tend to be based not on dynamical atmospheres like weather models but on statistics.

La Nina causes the jet stream to move northward and to weaken over the eastern Pacific. During La Nina winters, the South sees warmer and drier conditions than usual. The North and Canada tend to be wetter and colder. Source: https://oceanservice.noaa.gov/facts/ninonina.html)

NOAA’s Climate Prediction Center (https://www.cpc.ncep.noaa.gov/) is the biggest provider of seasonal forecasts, although there are a few others out there. This year we are in a La Niña, and so most of the seasonal forecasts have been based on that affecting our climate this winter. I won’t discuss La Niña here today (that is a topic for a future post, perhaps) but you can read a good general description at https://oceanservice.noaa.gov/facts/ninonina.html. The basic patterns of La Niña affect the temperature and precipitation across the United States in fairly predictable ways, and you can use statistics to show these patterns. You can see some examples of how La Niña has affected past winters at https://www.weather.gov/mhx/ensoninaanomalies. This year, the primary predictors of the winter climate have been the La Niña and the persistent trend that we are seeing towards warming temperatures due to greenhouse warming. From a statistical standpoint, it made great sense to predict that this winter would be warmer and drier than normal in the southern US and colder and wetter than normal in the north, because that is statistically the most likely pattern to expect in a La Niña winter, even when the climate is trending warmer over time.

So why did it not work this year? Because statistics can’t account for rare events that don’t follow the expected patterns. At the end of 2020 the atmosphere over the North Pole experienced a Sudden Stratospheric Warming (SSW), which means that the atmosphere about 10 miles above the North Pole suddenly got much warmer than usual. That messed up the usual distribution of temperatures in the Northern Hemisphere and helped push the really cold air to the south. It also pushed the winter storm track far south of where it usually occurs, making this a very wet winter in the Southeast, which is not what we expected! My farmers are not happy, but at least it means less likelihood of drought this summer. You can read more about the SSW at https://climate.gov/news-features/blogs/enso/sudden-stratospheric-warming-and-polar-vortex-early-2021. It might happen only once every ten years, or the cold air might just get pushed in a different direction next time, missing you and your winter garden altogether. Since the models are based on statistics, they will always show the most likely pattern, and instead we might experience winter that happens just once in ten years. Not so different that being the lucky person who gets rained on when the National Weather Service predicts just a 10 percent chance of precipitation!

90-day temperature departure from normal. Source: https://hprcc.unl.edu/maps.php?map=ACISClimateMaps

The good news is that we are getting better at these sub-seasonal to seasonal predictions, and we can expect to see improvements in the future as computers become more powerful and we have more experience looking at these periods. But for now, statistical models will continue to control the predictions at these intermediate periods, and we will continue to see the occasional miss when an unusual weather event occurs.

The dirt on rock dust

One of the newer “miracle products” targeted to gardeners is rock dust. Rock dust (also called rock flour or rock mineral powder)  is exactly what it sounds like. It is a byproduct of quarry work and is generally a finely pulverized material that resembles silt. It’s heavily promoted as a way to provide macro- and micronutrients to your soils and plants. Is it worth adding to your gardens?

Rock crushing at a quarry

First, it’s worth acknowledging that repurposing an industry byproduct is always preferable to throwing it away. Fortunately, the last few years have yielded some peer-reviewed research that we can use to make informed recommendations.

What’s in rock dust?

Obviously, the mineral content of rock dust is dependent on the rocks used to make it. This means the mineral content varies considerably, but in general rock dusts contain:

  • Large amounts of silicon, aluminum, and sometimes iron
  • Lesser amounts of calcium, copper, magnesium, manganese, potassium, sulfur, and zinc.
  • Potentially toxic levels of aluminum, arsenic, cadmium, chromium, copper, lead, nickel, and sodium.

I’ve added some tables from a few research articles that analyzed their rock dust mineral content below. Note the high silcon, aluminum, and iron content. (LOI = loss on ignition, meaning some materials were burned off during analysis.)

How is rock dust used as a mineral source?

Rock dusts must be solubilized to release minerals. There are some criteria that can speed mineral release:

  • Decreasing the particle size of rock dust.
  • Blending the rock dust with nutrient-rich organic matter like manure. This provides an acidified environment for mineral solubilization.

When is it beneficial to use rock dust?

There are documented benefits to using rock dusts – but only in agricultural production systems:

  • Rock dusts can contribute minerals to nutrient depleted soils, such as agricultural soils that have been overworked for decades.
  • Organic farmers can use specific rock dusts to supply micronutrients, rather than commercial fertilizers which are not certified for organic crop production.
  • Cereal crops – members of the grass family – require silica as a micronutrient (though silica is rarely if ever deficient in field conditions).

What’s the bottom line for gardeners?

As one article states, “…there is a potential for using [rock flour]…where there is a lack of these nutrients and where conventional chemical fertilizers are either not available or not desired.”

And how do you know if you have a lack of a certain nutrient? Why, by having your soil tested, of course! There is no point in adding anything to your soil unless something is missing. It is MUCH harder to treat a nutrient toxicity than to add a deficient nutrient. Iif  a soil test reveals a lack of a particular nutrient,  a carefully chosen product could supply this mineral. But you would have to know what else was being supplied and possibly creating a mineral toxicity.

At this point, there is no evidence to suggest that rock dusts are of any value to a home garden or landscape.  And adding these products can easily contribute to aluminum and heavy metal toxicities. I would never add it to this soil, for instance, as it already has excessively high aluminum levels.

Aluminum is already at potentially toxic levels in this soil. No need to add more.

This blog is full of great ideas on how to manage your soil naturally, sustainably, and safely. Rock dusts are just the latest garden product with lots of marketing but little benefit.

Houseplant Hubub: The rage about variegation

It is no secret that houseplants are hot right now.  Interest was growing before the pandemic, especially with millennials and younger folks.  Then the pandemic hit.  Houseplant interest skyrocketed since people were stuck at home and wanted to bring a little bit of nature indoors to make their spaces a little more cozy for 24/7 habitation. 

This has caused the demand, and price, of many houseplants to increase, especially if they are on the rarer side.  One thing that increases the price of many plants is when a variegated version of a standard plant has been developed. 

My reading nook/houseplant oasis

Just as an example, after posting a photo of my “reading nook/houseplant oasis” in my home office I was informed that variegated form of a Monstera deliciosa vine that I had was the highly sought M. deliciosa “Albo-Variegata” cultivar, usually referred to as a Monstera albo, or just Albo.  Folks were reaching out to buy cuttings right and left.  I ended up selling 5 single leaf/node cuttings over one weekend and made $675 in the process.  That’s right, $675!  The most variegated of the leaves sold for $200, and that was actually a bargain price.  The garden writer for the local paper, the Omaha World Herald, even picked up the story and shared it as a focus on the four new houseplant shops that have popped up in the city over the last few months.

Had my plant not had the variegation that made it an albo, each of those cutting would have been worth a few dollars apiece.  So what makes some plants variegated and others not?  Sometimes the variegation is the standard form found “in nature” and sometimes it is a cultivar or variety that has been bred or discovered by chance.  Let’s take a look at all the ways that a plant can get that variegation, whether it is standard or rare. 

Chimeric variegation

My Monstera albo that caused the hubub

This is a common form of variegation and the one responsible for the variegation of my Monstera.  In this form, a genetic mutation in some cells changes that cell’s ability to produce chlorophyll.  It may reduce chlorophyll production, resulting in yellowish or silver coloration, or eliminate chlorophyll altogether, resulting in white coloration. 

The name chimeric or chimeral is based on the fact that the plant displays two (or more) chromosomal patterns on one plant.  In Greek mythology, a Chimera is a frightening fire-breathing female monster with the head of a lion, body of a goat, and the tail of a serpent. 

Image result for chimera
An ancient chimera statue

This variegation can be stable, where the pattern persists throughout the plant.  Or it may be unstable, where it is random on certain leaves and parts of the plant can revert back to the standard green form.  These plants can also produce leaves that are almost totally white, which usually results in a leaf that will die since it can’t photosynthesize. 

This type of variegation also means that cutting or propagations may or may not be “true” to the pattern.  It can be random.  For my Monstera, the presence of white striping in or around the node that will become the new plant is the important marker for whether the new plant will be variegated or not. 

One common chimeric houseplant is the plant formerly known as Sanseveria, now a Dracena (Snake plant or mother-in-law’s tongue). Many of the different color patterns on some of the cultivars are due to cuttings taken from different parts of the “original” natural type that display different colors on them.

Viral Variegation

Image result for tulip mania
Viral variegation that was all the rage in Tulip Mania

While beautiful, this variegation will often reduce the productivity of plants if not kill them outright.  There aren’t a lot of houseplants that have this variegation, but some Hosta cultivars do.  Probably the most famous case of viral variegation is the Tulip Mania during the Dutch Golden Age (in the 1600s).  Prices of tulips skyrocketed and people were buying them as investments (maybe like the current houseplant craze, or GameStop stocks, or bitcoins).  Unfortunately, as the virus reproduced plants kept getting weaker and weaker.  Eventually the tulip market collapsed and lots of people went broke.  Let’s hope that doesn’t happen with the houseplant market….at least with my fancy Monstera. 

Natural Variegation

Natural variegation on Tradescantia

This type of variation occurs when the patterns or colors of the variegation are written into the DNA of the whole plant.  It will occur regularly throughout the entire plant, not randomly on some parts as in chimeric or viral variegation.  This variegation is passed through cuttings and usually through sexual reproduction from seeds as well, though different variations may pop up that cause a more desirable or rare cultivar. 

Common houseplants such as Tradescantia, Maranta (prayer plant), and many more common plants have this type of variegation. 

Blister, bubble, or Reflective Variegation

Reflective variegation on Phildodendron ‘Birkin’ following veins in the leaf

This type of variegation occurs when there is an air pocket or bubble between the lower layer of tissue and epidermis, or skin, of the leaf.  The lower level typically has green pigmentation from chlorophyll and the epidermis does not, resulting in a pattern that is usually white, silver, or yellowish though other colors could appear.  This pattern can be blotchy or splotchy like in some types of Pothos and Pepperomia.  It can also occur along the veins of some plants, resulting in white or silver veins on green leaves, as in some Alocacia, Anthurium, and Philodendron varieties. 

In conclusion…..

Even if you don’t have an expensive plant hiding in the corner, houseplants can add lots of fun and color to your living spaces.  And sometimes, your houseplant obsession can even pay for itself.  Online swap and sale groups have houseplant afficionados swapping and selling cuttings and plants all over the place.  So enjoy your plants….and maybe you’ll find a cash cow hiding in the corner.  Don’t mind me….I’m just over here propagating more Albos to fill up my “mad money” jar. 

Sources

Variegation mutants and mechanisms of chloroplast biogenesis

Variegated Indoor Plants: The Science Behind The Latest Houseplant Trend

Chimeras and Variegation: Patterns of Deceit

Why Fresh is Best—when it comes to mulch?

Fresh wood chips!

One of the most misunderstood gardening practices is mulching. There is much mulch misinformation in horticulture books, web pages and even extension leaflets. First,what is Mulch? Mulch is any substance the covers the soil surface. Mulch can be inorganic (rock), hydrocarbon (plastic) or carbon based (chips, bark etc.) While any material applied to the soil surface could be considered mulch, the benefits of mulching especially to woody plants are greatest from fresh woody chippings of tree trimmings–so called “arborist chips” applied fresh—not composted. Annual plants such as vegetable plants are often mulched as well but usually with materials that rapidly break down such as straw or some mixtures of shavings and manures. These materials are easily incorporated later when the next crop is planted. For woody plants such as trees and shrubs, mulches that persist for a longer time are desirable. Plastic mulches used in agriculture are not suited to shade trees or other landscape uses nor are landscape fabrics. Each of these deteriorate into landscape trash rapidly and do not benefit soils under the mulch layer. Stone mulches while used extensively in the South west US are not as beneficial to soils as arborist chips.

Why use mulches anyway? Mulches support healthy tree and woody plant growth in landscapes around the world. They increase soil organic matter, the diversity and functionality of the soil food web (particularly saprophytic fungi), support mycorrhizal partners of woody plants, supply nutrients and suppress weeds. Thick mulch layers increase root development, and help to suppress soil borne plant pathogens. The breakdown of woody mulches on the soil surface encourages development of soil structure, increased water infiltration, water holding capacity, and nutrient holding capacity of underlying soil layers. Well mulched trees and shrubs grow healthfully without fertilization.

So why not mulch with compost? Compost is not suited for use as a mulch around trees and shrubs. Compost is often screened and is of fine texture. Fine texture presents a few problems. Fine compost will make hydraulic conductivity with soil and allow for water to evaporate through the compost/soil interface. Thus the moisture savings we see under arborist chips will not be the same under compost. Compost is also able to allow weeds to germinate in it so the weed suppression effects of a mulch will also be lost. Composts applied as mulch can make an interface between the soil surface and the mulch layer which should always be avoided as it will impede water movement through the interface.

Another important reason for not mulching with compost is that compost is poor nutritionally for soil microbes. Composts have most of their active or labile carbon burned away during the composting process by the rapid respiration of microbes. The compost is turned aerated and kept moist until the process stops at this point it has some level of maturity. It won’t reheat when turned. The microbes have consumed most of the available carbon for their own growth and respiration in the compost pile, none of this remains for microbes in the landscape. Fresh arborists chips are full of labile carbon. When laid over the soil surface spores of fungi invade and they begin to uses this carbon for their own growth as an energy sources. Placing fresh wood chips on the soil surface is feeding the soil microbiology at the soil-mulch interface. In time (a few years) these processes go deeper in the soil and begin to feed the soil food web beneath the mulch layer. The diversity of fungi increases, mycorrhizae begin to transfer mulch nutrients to their woody hosts and pathogens are destroyed by enzymes that leach from the fungi infested wood chips. While composts supply minerals (all that is left of the feedstock after composting) they can’t supply the labile carbon as a source for microbes. Fresh arborists chips do all this and are thus the best mulch for woody plants.

Fungi eventually invade fresh mulches releasing nutrients and enzymes to underlying soils

There has been some concern lately for using mulches that are recycled as yardwastes. This concerns me as well because gardeners may be disposing of dead plants in their greenwaste cans. In theory, pathogens could be coming through the greenwaste stream to gardeners. Getting tree chips is best because there is little likelihood for soil borne pathogens since the materials are chipped branches. There is some possibility of wilt diseases (Verticillium spp.) surviving in arborists chips but little research has established that the pathogen can infect especially if the chips are stockpiled for a short time. In my own research we showed that pathogens, weeds an insects had very short survival times in stockpiled (not turned) piles of greenwaste. There is very little chance of pathogens coming to your garden from arborist chips and the benefits to your soil and perennial plants are worth the effort to get a “chip drop” from your local tree care company.

Pathogens buried in fresh yardwaste do not survive for very long

Literature

Chalker-Scott, L. 2007. Impact of Mulches on Landscape Plants and the Environment — A review. J. Environ. Hort. 25(4) 239-249.

Chalker-Scott, L., and A. J. Downer 2020. Soil Myth Busting for Extension Educators: Reviewing the Literature on Soil Nutrition. J. of the NACAA 13(2): https://www.nacaa.com/journal/index.php?jid=1134&fbclid=IwAR0cPfBl3V-3car-RPeEmlqzwW8bPEOPgND07xMTNgCOa5GkuSWtdD5WzF8

Downer, A.J., and B.A. Faber. 2019. Mulches for Landscapes UCANR publication #8672

Downer, A.J., D. Crohn, B. Faber, O. Daugovish, J.O. Becker, J.A. Menge, and M. J. Mochizuki. 2008. Survival of plant pathogens in static piles of ground green waste. Phytopathology 98: 574-554.

Downer, A.J., J.A. Menge, and E Pond. 2001. Association of cellulytic enzyme activities in eucalyptus mulches with biological control of Phytophthora cinnamomi Rands. Phytopathology: 91 847-855

Downer, J. and D. Hodel. 2001. The effect of mulching and turfgrass on growth and establishment of Syagrus romanzoffiana (Cham.) Becc., Washingtonia robusta H.Wendl. and Archontophoenix cunninhamiana (H.Wendl.)H. Wendl. & Drude in the landscape. Scientia Horticulturae: 87:85-92

The weather where you are

Greetings from Athens, GA! I am happy to join the group of contributors to the Garden Professors blog. My name is Pam Knox, and I am an agricultural climatologist in Extension at the University of Georgia as well as the Director of the UGA Weather Network and a former State Climatologist from Wisconsin. While I don’t claim to be an expert in gardening, I do know a thing or two about how weather and climate affect plants and hope to share some of that expertise with you over time. You can learn a little more about me from my bio on the blog page.

Source: Merritt Melancon, University of Georgia College of Agricultural and Environmental Sciences

If you really like learning more about weather, climate, and agriculture, you are welcome to visit my own blog page, “On the CASE—Climate and Agriculture in the SouthEast” at https://site.extension.uga.edu/climate/, where I post almost daily about stories that have caught my eye as well as climate summaries and outlooks for the southeastern US. I plan to post on the Garden Professors blog here about once a month and am happy to answer questions at any time at pknox@uga.edu.

A simple way to compare temperatures around your yard

For my first post, I thought I would talk a little bit more about the weather in your yard and how you can learn more about it. As gardeners, you probably spend more time in your yards than I usually do, and so you have noticed that the climate of your yard or field can vary quite a bit from one spot to another. We call that “microclimate” and if you search this blog for that term, you will find several articles about microclimates in previous years, so I won’t spend a lot of time on that here.

Source: toby everard / Blaen y Cwm in a frost pocket / CC BY-SA 2.0

One easy and inexpensive way to measure how temperature varies across your domain is to use an infrared thermometer to spot-check the temperature at a variety of locations. These thermometers are used a lot now to check forehead temperatures in the age of COVID, but they are also used by HVAC technicians to check heating and air conditioning, for example. You can find inexpensive ones selling for less than $20 online, and many hardware stores have them, too. You will be amazed how much difference there is in temperature between sunny and shady locations! Don’t forget to try it at night too to see how much tree canopy can affect night-time temperatures. Of course, if you want a more systematic and scientific approach, you can follow Linda Chalker-Scott’s experience using multiple min-max thermometers as described in http://gardenprofessors.com/microclimate-follow-up/.

Infrared thermometer. Source: LuckyLouie, licensed under the Creative Commons Attribution-Share Alike 3.0 Unported.

CoCoRaHS: Precipitation measurements by citizen scientists

One of the many things I do is to serve as a regional coordinator for CoCoRaHS, short for Community Collaborative Rain, Hail, and Snow network. This is a group of dedicated citizen scientists who take daily rainfall measurements and report them online via computer or smartphone as part of a nationwide (and now international) network of precipitation observers. Theses observations are used by the National Weather Service, drought monitors, water supply managers, and others to document local variations in rainfall at a much denser scale than other available observing networks. I am sure that some of the readers of this blog are already contributing! You can learn more about the network and how to sign up at https://www.cocorahs.org/. Please keep in mind that they do require the use of a particular scientific rain gauge, so a hardware store gauge is not likely to have the degree of accuracy that is needed to participate. A list of inexpensive vendors (costs start around $40 plus shipping) can be found on their site in the right column. By measuring precipitation at your house, you are not only monitoring your own conditions but contributing to our knowledge of water availability around the US and beyond.

One version of the standard CoCoRaHS precipitation gauge. Source: Lamartin, licensed under the Creative Commons Attribution-Share Alike 3.0 Unported.

I am looking forward to interacting with you all in the months ahead, and please feel free to contact me if you have specific weather or climate questions.

Not all Extension publications are created equal

(A friendly caveat – this post does not lend itself well to images. So the pictures here are simply eye candy from my 2019 trip to London to reward you for considering this visually drab but important topic.)

The actual “whomping willow” in Kew Gardens

I’ve been involved in Extension education for 17 years and one of the most important things I’ve learned is that Extension audiences want information that’s easily understood and has obvious practical use. Most peer-reviewed research articles are written for academic audiences, so only the most persistent nonscientists will slog their way through pages of dense, technical writing.  It’s up to Extension educators to accurately translate and summarize technical scientific information for use by the public.

Epiphyte “tree” in Kew Gardens glasshouse

Extension is part of the American land-grant university system and extends traditional academic teaching to citizens statewide (hence the term “extension”). In addition to providing seminars and workshops to interest groups, Extension publishes educational materials in-house and provides them at low or no cost to their clientele.

The Bonsai Walk at RHS Wisley Gardens

But here’s the problem: the standards for Extension publications are set by each university. Unlike the peer-review system adopted by reputable journal publishers, Extension publications can vary widely in quality. Some universities have adopted a system that parallels that of scientific journals in that they require double-blind peer review. But many universities have not – and this means that looking for Extension publications on a particular topic results in a collection of materials with contradictory messages. This is incredibly frustrating to confused nonscientists and to Extension faculty who have to sift through the mess to find publications that are relevant and science-based. As a result, Extension publications are often regarded with suspicion by both nonscientists and academic faculty (who often do not have the disciplinary expertise to sort through the mess). Since I was a traditional academic before entering Extension, I have a foot in both camps.

Sunken gardens at Kensington

Nonscientists are probably not going to have the disciplinary expertise to tease out the good stuff from the dreck. But they can look for some indicators that will help them identify the most reliable publications. Here’s a checklist to start the process: the more “yes” answers you have, the better the chances are that the information is reliable.

  1. Is the author identified? Anonymous publications are not reliable.
  2. Is the author an expert? Expertise is determined by advanced degrees (at least a Master’s degree) in the subject matter.
  3. Is the publication peer reviewed? There should be a logo or a statement on the publication that says so.
  4. Is the publication relevant? High-quality Extension publications targeted towards commercial agricultural production are usually inappropriate for use in home gardens and landscapes.
  5. Is the publication current? Information relative to urban horticulture and arboriculture is rapidly changing. Publications over 10 years old likely do not contain the newest information.
  6. Are there scientific references included, either as citations or as additional readings?

As necessary as this process is for identifying reliable information, there can also be negative outcomes. Universities that do not have a rigorous process for publishing Extension materials put their Extension faculty into the uncomfortable position of having to defend their work when it’s questioned. It would benefit all parties for every land-grant university to institute a rigorous, peer-reviewed process for their Extension publications.

My favorite ad at the tube station

Tiny plants that pack a flavor and nutrition punch: getting in on the microgreen trend

If you do any searching for gardening (or even think about the color green), you’re likely bombarded with adds on social media and search engines about all stuff gardening.  One of the recent trends is microgreen production.  There’s all kinds of fancy little systems and gizmos that will help you grow microgreens for a price.  But what are microgreens?  Are they the same thing as sprouts? And do they have the same food safety issues as sprouts?  Let’s discuss, shall we?

What are microgreens?

Microgreens are basically tiny plants harvested shortly after germination.  Unlike sprouts, like the common alfalfa or bean variety, these baby plants are grown on a medium of some sort and just the “above ground” portion of the plant is harvested.  Sprouts, on the other hand, are typically grown in a moist environment without a medium and harvested whole -roots, seed, and all.  It is this wet and warm environment that make sprouts especially risky for food borne illness. 

Microgreens can be any number of different crops, but common types are kale, mustard, chard, broccoli, arugula, and radish.  Sunflower and pea are also common, but they fall more in the “shoot” classification since they are harvested a bit larger.  There’s lots of other crops that are used for microgreens, including herbs like cilantro and even marigolds, so the sky is the limit!

Why microgreens?

There are a few things that make them attractive to farmers which also are good for home growers.  First, it only takes 1-3 weeks for a finished crop.  This fast turn-around makes it easy to keep up with production needs for customers (or your own uses) and also reduces risk.  If a crop fails, it is much less damaging if it only took a week to grow rather than a whole field full of peppers that have been growing for months getting wiped out by disease or a storm. 

Second, is the value and profit.  While there is some investment in seed starting equipment and then continued expenses of seeds, trays, and media, microgreens have a high per pound value.  Microgreens are used in small quantities and are therefore sold in small quantities.  A small amount you may purchase at a farmers market for a few bucks may be an ounce or less.  When you calculate it out by the pound, microgreens are sold for between $20 and $200ish per pound (depending on the variety, organic production, other factors). 

And of course, microgreens lend themselves to year-round production.  It can be a fun and easy way to get some flavor and color on the plate even in the dead of winter.  Just a few square feet of production area can provide a decent sized crop, so it is great for those with limited space or no garden at all.

Look ma….I made fancy mac and cheese. All I had to do was add some microgreens.

Microgreens are popular with home cooks and chefs alike because they pack a flavor punch and add some color and texture with just a pinch or two of product.  Studies have shown that microgreens also pack a nutritional punch in a small package.  However, production practices can greatly influence nutrient content, especially light.  Microgreens grown with higher quantities (brightness) and quality (spectrum colors, mainly red and blue but also green) of light have higher nutrient values. 

How do you grow microgreens?

The way you grow microgreens lends itself to why they are so popular to grow, for both home enthusiasts and farmers alike.  Microgreens are basically recently germinated seedlings.  If you are good at seed starting, you can be good at growing microgreens.  Lots of the ads I’ve been seeing recently are for attractive but pricey growing trays and mats that you just lay down and water.  However, budget conscious gardeners can grow them pretty simply and inexpensively at home.  And you probably have most of the equipment you need, especially if you start your own seeds each year! 

Microgreens are usually grown in those flat plastic seedling trays, the type that don’t have cells in them (the ones used to hold the cell packs).  For those “in the know,” they’re called 1020 trays.  You can either use a sterile media like peat or coir or purchase specific fiber mats (I have some made from hemp -they work well but smell like a moldy gym sock full of weed when in use). We’ll talk about the importance of a sterile media when we talk food safety. 

A demonstration of sowing microgreen seeds on hemp fiber mats.

The sowing density of seeds can vary by crop due to seed and seedling size.  Typically, one ounce of seeds can sow anywhere from one to eight 1020 trays.  In general terms, large seeded crops like chard and beets may take up to ½ cup per tray and small seeded crops like radish or kale might require ¼ cup.  Tiny seeded crops, like sorrel may need just a few tablespoons.  If you’re really into production, Penn State extension has an excellent Excel calculator to calculate seeding rates. Typically, you’ll broadcast the seeds on top of your media and then maybe sprinkle a little more media on top to make it easy (no dibbler here!).

Most seeds require darkness to germinate, as well as high humidity.  You can use humidity domes and cover trays with an opaque material to achieve this, or you can use the trick that producers use and stack trays on top of each other for a day or two.  This keeps the seeds covered and dark and preserves moisture and humidity.  Just unstack them after a day or two and stick them in their growing location.  As with seed starting, you’ll have the most success if you provide some good quality light and heat.  (You can search through old articles to find lots of info on seeds starting).  There’s research that shows that light is a big factor in microgreen growth, coloration, and nutrition levels. 

You’ll harvest your microgreens typically one two three weeks after sowing.  Typically, this is done after at least one set of true leaves have formed, but you can usually let them go until there are at least two (or sometimes three) sets of leaves.  To harvest, use a sharp, cleaned pair of scissors to snip the seedling off just about soil level, being sure not to disturb the media so that you don’t get it on your precious produce.

There should be no need to wash the microgreens right after harvest and before storage, since they’re typically grown in a clean environment.  Washing before storage can increase storage moisture to levels that support microbial growth, reducing storage time and also increasing the risk of human pathogens.  Instead, store microgreens (and most leafy greens) without washing and wash just before use. 

Working with a local farmer to demonstrate microgreen production at a regional production conference.

Food Safety

As we learned when discussing what microgreens are and comparing them to sprouts, we learned that microgreens have been found to have much lower risk of human pathogens.  However, the risk is not zero, especially if production practices are conducive to pathogens.  We just discussed that washing prior to storage can lead to microorganism contamination, but there are a few other areas where contamination is easy.  To reduce contamination, follow these steps:

  • Always use clean and sanitized trays or containers.  If reusing trays, be sure to wash with soapy water then sanitize with a dilute bleach solution or other approved sanitizer. 
  • Keep the production area clean and sanitized.  Microgreens are often produced on multi-leveled vertical racks, so contaminants can drip down.  Make sure all surrounding surfaces are clean.
  • Use sterile media for production.  This is typically a soil-less media made primarily of peat or coir, like a seed starting mix, or specialized fiber growing mats.  Do not use regular potting soil, any mix containing compost, or anything containing soil to avoid the introduction of human pathogens or other microorganisms that might affect the crop, such as those that cause damping off.
  • Use cleaned and sterilized seed. Many companies sell seeds specifically for microgreens that have been processed to remove pathogens.  I’ve seen seed production, and while it isn’t filthy, it typically isn’t sterilized to the level of food production standards.  You can sterilize common seed at home using a solution of hydrogen peroxide or vinegar.  For guidance, visit this guide from K-State extension.
  • Use a clean source of potable drinking water.  If you wouldn’t drink it as is, don’t use it.  Typically this means it should be straight from the tap of a trusted source. 

Conclusion

Growing microgreens can be a fairly easy and enjoyable way to produce something fresh and green year round.  In terms of production practices, it is basically ramped up seed starting where your seedlings only grow a few weeks before harvest. This makes it a fairly easy process and one that can be done almost anywhere.  If you’re looking for an indoor gardening project or just want to add a quick source of nutrients to your diet, give microgreen production a try. 

Sources and resources:

Microgreen nutrition, food safety, and shelf life: A review

Microgreens and Produce Safety

Microgreens—A review of food safety considerations along the farm to fork continuum

A step-by-step guide for growing microgreens at home

Pruning Paints Debunked

When my turn comes up to blog for the Garden Professor site I like to reflect on the horticulture in my own gardens and orchard. Right now I am focused on pruning my old apple and stone fruit orchard. It has suffered bear attacks, drought, and mismanagement before we arrived in 2018. The previous owners were very aware of the need to treat pruning cuts large and small. The remnants of tree wound dressings are found all through our orchard and range from white latex paint to silicone caulk. Unfortunately there has never been good research evidence to support pruning paint use. Despite the lack of any published evidence, for their usefulness, pruning paints are still available in garden centers and there are no end of do it yourself preparations that gardeners continue to use on pruning wounds.

Wound dressings did not protect this apple branch from decay fungi

So why paint the cuts on your fruit trees after pruning? One idea is to keep the surface protected from infection by pathogens. Plant pathogenic fungi and bacteria can cause disease that may lead to blight, cankers, or wood decay.

Laetiporus gilbersonii (chicken of the woods) is a common brown rot wood decay fungus that destroys cellulose in wood.

Wounds are often implicated in pathogenesis or disease development. Many horticulturists believed that wound dressings provide a barrier to entry of pathogens and insects. Fruit trees are easily decayed by a number of fungi which cause white and brown rots in their wood. Wood decay organisms enter through wounds created when branches break from excessive fruit loads or when pruning wounds expose heartwood or significant amounts of sapwood. So painting cuts became a very common practice advocated by gardening columns and various books over the last century.

Wound dressings used in Ukraine for many years on this shade trees did not stop decay fungi from fruiting under the wound dressing! Photo courtesy Igor Signer, Kiev, Ukraine

Wood contains cells that store starch. Here, parenchyma cells in the wood ray tissues have been stained purple to show their starch content. Fungi that invade wood use this stored energy to grow, invade and degrade wood. Fungi invade both the heartwood (non-living) and the living, water transporting sapwood. Sap-rotters typically lead to the decline in tree vigor and canopy density.

Over one hundred years ago Howe (1915) recognized that pruning paints did not help wounds to close, in fact, they retarded the development of callus wood especially in peaches. Howe called into question the necessity of using wound dressings at all. Still the use of wound dressings has prevailed to this day.

Shigo and Shortle (1981) showed that wound dressings do not prevent decay nor do they promote wound closure. If the poor pruning practices that harm trees are abandoned, then wound dressings are unnecessary (never mind that they don’t work). Shigo often maintained that tree genetics determine the extent of decay forming in a given species. His work conclusively showed that flush cuts would lead to more decay than cuts that were made outside the branch collar or bark ridge.

Expanding foam? As far as I know there is no research on expanding foam but lots of anecdotes and observations of how it is often used to fill tree cavities. Filling cavities with cement to prevent or limit decay is a practice that subsided some decades ago and is generally not recommended as part of modern arboricultural practice. By the time decay has caused a cavity it is usually well entrenched in the wood of a tree and is not controlled by filling in the void. The best way to limit decay in trees is to prune them frequently so cuts are never large and the tree (fruit or shade) develops a strong structure that is unlikely to fail.

Literature:

Chalker-Scott, L., and A.J. Downer 2018. Garden Myth Busting for Extension Educators: Reviewing the Literature on Landscape Tree. Journal of the NACCA 11:(2) https://www.nacaa.com/journal/index.php?jid=885

Howe, G.H. 1915. Effect of various dressings on pruning wounds of fruit trees. New York Agricultural Experiment Station, Geneva, N.Y. Bulletin No 396.

Shigo, A.L and W. C Shortle. 1983. Wound dressings: Results of studies over 13 ykears. J. or Arboriculture 9(10): 317-329.

Shigo, A.L. 1984. Tree Decay and Pruning. Arboricultural J. 8:1-12.

The complicated issue of heavy metals in residential soils. Part 3: How can we garden safely in the presence of heavy metals?

This is the last part of our discussion on gardening in soils that contain heavy metals (you can catch up on part 1 and part 2 if you need to). Today we’ll focus on the strategies you can use in your gardens and landscapes to reduce your exposure to soil-borne heavy metals.

Raised beds can be an easy solution for gardeners with contaminated soils

Test your soil!

First – and this should really go without saying – you must test your soil to determine if it contains heavy metals of concern. The COVID19 pandemic provides the perfect comparison: you can’t assume you don’t have the virus just because you don’t have symptoms, and you can’t assume your soil doesn’t have toxic heavy metals just because you don’t think it does. The only way to know for sure, in either case, is through testing.

This eyesore did more than spoil the view.

Most soil tests routinely report aluminum, lead, zinc, and aluminum. Other metals, such as arsenic, cadmium, and chromium, may not be part of a basic soil test and you will need to request additional tests if these metals are likely to be present. Often, county health offices will provide free soil testing if you live in a region where there are known contaminants. For example, I live in the Tacoma area where large amounts of arsenic were deposited for decades downwind of an aluminum smelter. Residents of Pierce County can get free soil testing because of the potential danger.

The aluminum is higher than we would like to see, though everything else looks fine.

Even if you don’t live in an area where industrial or agricultural activity may have added toxic heavy metals to your soils, your soil may naturally contain high levels of some metal of concern. As I’ve mentioned in a previous post, our soils have high levels of aluminum. Because we are not downwind of the smelter site mentioned above, I would not have assumed we had any metals of concern, given the rural location of our land, but knowing this informs my choice of vegetables to plant.

The demolition of the Tacoma smelter. Finally.

Avoid adding more heavy metals

Fortunately, many of the consumer products that contained heavy metals are now gone and no longer will add to existing levels of soil metals. But there are still sources out there that gardeners are well-advised to avoid.

  • Older treated timbers. As mentioned in my first post, landscape timbers were once treated with a chemical preservative containing arsenic and chromium. Even though gardeners love reusing materials (we are a thrifty bunch!), these older timbers should be removed if they are still on your property. New timbers are treated with a copper-based solution, which is a more environmentally friendly preservative.
  • Kelp-based fertilizers and amendments. While these products are wildly popular with gardeners, they aren’t very effective fertilizers. Moreover, some kelp species accumulate heavy metals, like arsenic, in seawater and these metals will become a permanent part of your soils. Take a look at this fact sheet for more information.
  • Recycled rubber mulch. This product should be avoided for many reasons (you can read more about the problems in this fact sheet). As it disintegrates it releases high levels of zinc into the soil. And while zinc is an essential micronutrient in plants (and people!), high levels are toxic.
  • Unregulated composts and organic products. Certified composts and other organic products have been tested for pesticide residues and heavy metals: unregulated products have not. Unless you are making your own compost from materials you know to be free from contamination, your safest bet is to purchase certified products.

If you have materials like old timbers, you should never burn them or throw them away. They need to be disposed of as a hazardous waste, much like old cans of paint, mercury-containing thermometers, etc. Eventually, we may be able to use these hazardous discards for biofuel production through pyrolysis, or extract the heavy metals from them for reuse. For now, just dispose of them in a legal and environmentally responsible way.

Cedar is naturally decay-resistant and can be a good choice for rasied beds

Suggestions for safe gardening

If soil testing reveals high levels of metals of concern, there are work-arounds to allow you to still enjoy growing vegetables safely. If your soil tests reveal that your soil is safe for growing edibles, congratulations! You may still benefit from some of the suggestions below.

  • Cover exposed soil with ground covers and mulches (coarse organic or inorganic materials) to eliminate metal-laden dust.
  • Create raised beds for edibles using untreated wood or other metal-free materials. Line the bottom of the bed with an impermeable membrane to prevent movement of soil-borne metals into the beds.
  • If raised beds are not possible, use large containers to grow edibles.
  • Avoid using galvanized tubs, as they will leach zinc (and sometimes chromium) into the soil.
  • Fill beds and containers with clean (i.e., tested) soils or potting media.
  • Don’t plant vegetables near roadways, which are a source of airborne lead.

Planning Ahead (in a pandemic) for Vegetable Garden Success

Looking back to January 2020, most of us would have never imagined the year we’ve had.  All of our best laid plans went away and instead we socially distanced, scavenged for toilet paper, and canceled events and vacations.  But one thing that wasn’t canceled was gardening.  By June, garden retail sales had increased 8.79% over the average, a big jump for a trend that was already showing increased gardening over the last few years.  Wanting to grow food to ensure a safe food supply was one reason gardening increased this year, but it also served as away for people break the boredom of being stuck at home. 

One bit of advice that we in Extension always give to gardeners, young and old, is to plan ahead, especially if they are growing fruits and vegetables or starting their own seeds.  Given that rapid increase in garden sales, many would-be gardeners were frustrated to find the seed racks and plant shelves empty and online catalog retailers out of stock. From personal experience, I can tell you that white beets don’t look quite as pretty in the jar as those bright red ones.  Given the fact that the pandemic is likely to continue well into 2021, it would be a good idea for those thinking about gardening to plan ahead on what they want to grow and plan to buy seeds and supplies early.  This not only helps you plan out what you want to grow and when to start or plant it, but will also help you beat the rush and get the plants or varieties that you want. 

Here are some things to consider while planning for your vegetable (or other) garden:

  1. What are your garden goals?  Are you wanting to harvest for fresh eating only? Hoping to preserve harvest for later?  Have extra to sell or give away?  Figuring out what you hope to accomplish will help you plan out how to use your space most effectively.  Plan to plant extra of stuff you plan to preserve or give away, and plant it all at the same time to have a larger harvest.  If you’re focusing on fresh eating for just your family, planting smaller quantities of each plant and spacing them out over time would be better.
  2. What do you enjoy eating or growing?  Focus on the crops that you and your family like to eat, especially if you have limited garden space or time. 
  3. What resources are you willing to commit to gardening?  How much money do you have to invest in seeds, plants, or supplies?  And how much time do you have to spend per week?  You should base your garden size on what you can reasonably support.  And also look for investing in efficiencies.  For example, adding drip irrigation will be an investment of time and money up front, but will save on water bills and time spent watering the garden and will likely increase your harvests so it can have a pretty decent return on that initial investment.
  4. Are you planning on growing throughout the garden season?  Many people focus on gardening May through September and often miss those very productive early spring and fall months when cool season crops flourish.  Making a plan for using space effectively can include growing an early season, summer, and late season crop all in the same spot using interplanting or succession planting.  If you aren’t sure what to grow when in your climate, look for local growing guides or calendars to help.  Your local Extension office will likely have some good resources to share.  Having an idea what you want to grow throughout the season will also help you make early purchases to ensure you have what you need throughout the season.  Seeds are usually off the store shelves by mid to late summer, so buy seeds in the spring for those fall and late planted crops just to be prepared. 
  5. Are there things you want to grow that would be easier to buy?  This question is especially important if you have limited space, time, or money.  Crops like potatoes, cabbage, and onions are often cheaper for home growers to buy than grow and crops like squash can take up a lot of room and are often easy to buy (there’s usually plenty of zucchini everywhere in the summer).  Focus on those things you can’t buy like interesting varieties of tomatoes, peppers, etc.
  6. Are you ready to deal with diseases and pests throughout the garden season?  Be ready to scout the garden for pests and do a little research on the common pests and diseases on the crops you’re growing so you know what to look for.  You can often reduce the likelihood of pests and diseases by growing newer resistant cultivars versus older varieties and heirlooms that don’t have resistance bred in. 
  7. What has worked (or not worked) for you in the past?  Focus on growing those things you do well.  Take some time to research or learn how to better grow the things you haven’t grown so well in the past (extension resources are great for this- contact your local office or search for info online, looking for pages that end in .edu).  And don’t be afraid to try something new – you can find new favorites by trying out new cultivars or even new crops. 

Using some of these steps can help you plan ahead for a year of garden success. The key is to start early, and especially in 2021, buy those seeds and supplies early.  When you do, take a look at your plans for the whole garden season and plan accordingly in advance.  Though while you’re out there buying those seeds, be sure to leave a packet or two on the rack for me.  I’d prefer to have red beets for pickling this year instead of those white and yellow ones.