Potting Soil Poison

Facebook

Gardeners often struggle to grow plants in containers. You may feel that you have a really black thumb at times when newly planted seedlings fall over dead or fail to thrive. The problem may not be disease or poor gardening acumen but rather your container media otherwise sold as “Potting Soil”. A trip to one of the big box stores or a larger retail nursery will offer gardeners many choices of bagged potting soils. They are marketed to give you the impression they will grow anything and everything. But do they?
Over the last couple of decades I have done comparative potting media trials where I plant small plugs (usually impatiens) three per six inch container. I go out and find every retail brand of potting mix I can find and plant them all up and then follow them for about two months. I’ve been thinking of revisiting the studies and seeing if anything has changed. I also want to test the assumption that you can’t predict the grow ability of a potting soil by reading the ingredient label as some research suggests. While there can always be a surprise with any given product, I think that from my many trials I can make some suggestions to improve the outcome of your gardening adventures in containers.

Soil on the left has no nutrients same soil on the right with 2 grams of ammonium sulfate added on the surface of the medium one time.

Growing media is not the same as soil. Since media are placed in containers, often plastic ones, they need to be very porous. Porosity of up to 50% is not uncommon in container media. The bulk of the media needs to hold water and minerals for plant growth. Usually an organic material that has a high cation exchange capacity is used. The darling of potting mixes has been Peat Moss. Since peat moss harvesting is damaging to the environment (see previous blog by Linda CS), many gardeners may want to avoid media with peat moss. Bulking agents that do not hold much water or nutrients are also added to “lighten” or aerate the medium. Horticultural perlite (expanded volcanic glass) is the most common. Sand is also sometimes used but it adds weight to the bag and is not preferred by manufacturers. Some media use bark or other wood products to provide greater porosity.
There are usually about 18 to 20 different media on the market at any given time and the results of growing plants in them is predictable. About 10 of the media will not grow anything very well, 5 give ok results and about 5 of the products will grow a nice plant. A lot of the reason for success or lack thereof is about nitrogen chemistry. If no fertilizer is added, the medium will likely not grow well. You can add your own fertilizer and make about  ½ of these poor growing media work. One quarter to one half a teaspoon (approximately 2gm) of ammonium sulfate usually peps up most media that are ok but lack nutrients.  This is an amount used in a standard height 6inch (15cm) diameter plastic container.  Larger containers and plants will require incrementally more fertilizer to achieve growth goals. 
Some media will not grow even when fertilized. This is because they may contain manures, or composts and manures that have added too much salt to the medium. Adding fertilizers to these products only makes them less growable. Sometimes these potting soils will improve with leaching but then fertilizer will need to be added back later to make up for what was leached away. Generally a salty potting mix is worth avoiding.
So how can you tell if you are getting a good or bad mix. You can start by reading the ingredient list. And you will need to decode that list to help you make some decisions. What manufacturers call things can be very misleading. Look for a medium that has fertilizer added and lists what kind of fertilizer was used. These media usually grow without help. Avoid media that use manures, they are not suitable container media ingredients.

Some potting soils claim they can grow plants bigger than others, some claim to be all organic and some claim to be friendly to the earth. This is all marketing. Look for a simple ingredient list that is fortified with a nutrient charge (fertilizer). Begin there. You may want to sieve the medium to remove large particles if you are growing seeds, add more bulking agent (bark, sand, perlite, pumice) for plants that need increased porosity such as orchids, bromeliads and cactus. Don’t be afraid to modify potting mixes to suit the needs you might have. If plants don’t grow, consider adding more nutrients. After growing for some time (months to years), many media will breakdown, and the plant will need to be repotted in a new medium.

Facebook

Standing up for (and lying down on) the environmentally sustainable lawn

Facebook

If you’ve been reading this blog for a while, you might remember that I got rid of our lawn (getting rid of your lawn post) at our Seattle house . It took too much water to keep it green in the summer, and the resulting ornamental landscape was more ecologically diverse and aesthetically pleasing for such a small site.

On the way to replacing the lawn with landscape
And the same landscape a few years later.

But that was then, and this is now. In 2017 we moved back to the family farm, which has a full acre of landscape – including lawn. Although we are slowly reducing the vast expanse of lawn, we will keep part of it because (1) we are on well water and there is an irrigation system and (2) because we are allowing the lawn to become a diverse tapestry of different plant species – an ecolawn, if you will.

Farmhouse landscape with an acre of lawn!

When I was growing up, my father fought unsuccessfully to keep the moss and weeds out. I happen to LOVE the moss and the fact that it grows here has nothing to do with poor drainage or anything else. It grows here because the environmental conditions support its growth. I love the spongy feel of the underlying moss, and it reduces the amount of mowing necessary because it’s limited in height. And no fertilizers or pesticides are needed.

Mossy lawns are lovely for walking…and laying down on.

Speaking of mowing…I hate gas powered mowers. They’re smelly and noisy, they contribute to air pollution, and when something goes wrong you have to take it to small engine repair. These excursions are infrequently successful but always expensive. So imagine my delight is discovering newer battery-powered mowers! All you have to do is swap battery packs. They are quieter, there are no emissions, they don’t smell, and they have an electric engine! No small engine repairs, and they are also lighter for this reason.

A newer technology, battery-operated mower with rechargeable battery

I was even more excited to find compatible leaf blowers. We have tons of Oregon white oak leaves, and we blow them into the beds. We do NOT leave them on the lawn, because they interfere with some of our non-grass lawn inhabitants. They are perfect on the beds because their curly, rigid structure prevents compaction and they keep weeds out while allowing water and oxygen to penetrate.

Keep the leaves off the lawn and over the beds.
Our container violets have escaped into the lawn; covering them with leaves could kill them.

Finally, our ecolawn allows me to see and appreciate the reproductive structures of our mycorrhizal fungi. I don’t even pretend to know the species and whether they are edible. I just love the fact that they appear every fall after we’ve stopped mowing.

Some of our lawn mushrooms…
…and some others…
…and others.

Sometimes lawns aren’t appropriate, as we found in Seattle. But sometimes they are – and as long as they are cared for in an environmentally sustainable manner, they shouldn’t have to be something we apologize for.

Facebook

Fruit Tree Pruning Basics

FacebookLast week I helped to train Master Gardeners about pruning fruit trees. January and February are the months that we recommend fruit tree pruning in Southern California.  In colder climates, pruning may not occur until later when freezing temperatures are minimized and there is less chance of damage to new growth. While trees don’t “need” pruning to bear fruit, pruning practices can enhance fruit production, promote earlier fruiting bearing buds, and increase fruit quality if done in an informed way. In many respects, modern fruit trees have been bred for big fruit, and pruning might need to be done to prevent limb breakage, reduce the number of fruit and position it in the tree fore ease of harvest. Misinformed pruning can lead to disease or loss of bearing wood. “Fruit tree” is a broad category, but for this blog, I am referring to deciduous trees (not subtropicals such as citrus, avocado, mango etc.). Two main categories are common: Pome fruits such as apples and pears and Stone fruits such as cherries, plums, apricots, peaches, almonds and pluots.

The first thing to figure out when pruning any tree grown for fruit production is where the fruit will be formed. This requires examining and understanding buds, twigs and the age of growth that is produced. Second we need to understand the tree’s responses to pruning and how that will affect future fruit production. Finally an understanding of negative consequences of pruning is essential.

Peaches produce fruit on last year’s growth

Apples and pears produce fruit on spurs

Why prune you ask if trees will produce without pruning? Pruning shapes a tree, and helps to create fruiting buds that are conveniently placed for harvest-this keeps fruit pickable with less time on ladders. Pruning gives an opportunity to remove fruiting buds thereby invigorating remaining buds and increasing size and quality of the fruit that will form with less fruit thinning later. Pruning also gives an opportunity to remove diseased, damaged, tangled or infested branches.  While various training styles can be used for structural pruning of young fruit trees the open vase or modefied central leader systems are preferred and descriptions of them can be found in extension leaflets.  For my own trees I usually do not prune them the first year after planting in order to encourage a stronger root system.  In the second and third years I pick scaffold branches or train branches on the central leader.

Fruit is produced on various aged twigs or branches depending on tree species. Peaches produce fruit on growth from the previous year or one year old wood. Since peaches grow vigorously fruiting wood ends up on the outside of a tree. Heading back (or heading) cuts (reducing last year’s branches by at least half their length) will remove ½ the fruit and stimulate buds lower in the tree that will make more fruiting wood. For this reason peaches are usually pruned “hard” to stimulate maximum amounts of fresh fruiting wood. Apples, Pears, Plums, Cherries and Apricots produce most of their fruit on small side branches called spurs. Apples and Pears may also produce fruit from the terminal bud.

Young trees often make many long whips and these are usually headed back (heading cuts remove the terminal bud) to stimulate spurs in the following years. Once the overall shape and size of the trees are set, less pruning is required as spurs may produce fruit over decades of time. As trees mature spurs build up so removing densely clustered spurs on mature trees with thinning cuts (removing an entire branch, spur or twig) will increase the size and quality of fruit formed on the remaining spurs.

Pruning is often used on newly planted trees to form the structure of the tree. When forming the branch structure do no indiscriminately head back every branch as this will stop the growth of the branch that is headed. New growth will only resume from buds that are released to grow. Think carefully about what you want to grow and what you want to slow-down in growth. Pruning is always a growth retarding practice. Branches are best spaced up and down and around a central leader. In other training systems for stone fruits one heading cut when the tree is just a whip will create an open vase shape where all the branches arise from a single point on the trunk. While this is considered a branch defect in shade trees, it is a convenient training system for fruit trees if you don’t let the tree get too large and manage the fruit loads that are produced. Trees trained to a modified open center where branches are spaced on a central leader have stronger branch attachments and can bear greater fruit.

This apple is extensively sunburned from over pruning

As trees age and grow they require regular training with heading cuts to shorten vigorous branches of peaches or thinning cuts to remove whips, water sprouts or other unwanted branches.  Be careful not to over-prune especially in summer or sunburn can result.  When fruit sets in the spring or early summer it can be thinned by hand.  This form of pruning will increase size of the remaining fruit and quality.   Summer pruning is sometimes practiced on very vigorous trees to slow their growth and invigorate buds for the following spring.  Prune with care in the summer espeically on green barked trees like apple and pears to avoid sunburn.Facebook

Woodpeckers: Friends or Foes?

Facebook

[This blog post has been provided by Bec Wolfe-Thomas, an administrator for the Garden Professors blog group on Facebook.]

Pileated woodpecker. Photo by Josh Laymon

Woodpeckers (Picidae) frequently get a bad rap from gardeners. It’s often their impression that the birds irreparably damage trees, but this is untrue. Most woodpeckers are insect eaters; they can hear insects under the bark and in the wood of trees. They then target their drilling with uncanny precision to get their meal. This removal of insect pests, such as emerald ash borer, benefits the tree.

Emerald ash borer larva. Photo by Pennsylvania Department of Conservation and Natural Resources.

And what about the feeding holes left in the tree? This is an exciting bit of tree physiology! Trees are able to compartmentalize or isolate the wounds. After the woodpecker has made a hole to retrieve the insects within, the tree starts compartmentalizing the wound. How long it takes for a tree to compartmentalize a wound and close it depends on species and climate factors.

Compartmentalization of decay in trees (CODIT). Photo from Wikimedia.

Below are photos of woodpecker holes in various states of compartmentalization, from freshly drilled to completely compartmentalized and closed holes. Woodpeckers help keep trees healthy by preventing large pest infestations. And while the small feeding holes might be an aesthetic concern to gardeners, they’re only temporary. They will eventually be compartmentalized and closed, and the tree will be healthier in the long run by having fewer pests.

This woodpecker hole is partially compartmentalized; you can see the edges are rounded, no longer rough. Photo by Bec Wolfe-Thomas.
This wound has fully compartmentalized and all that is left is a pucker on the trunk. Photo by Bec Wolfe-Thomas.

[Please note the larger holes excavated for nesting will compartmentalize but will not close over time.]

Facebook

Flammability of Landscape Plants–Why the lists are BAD!

FacebookCalifornia had the worst fires in the last two years of its existence as a state. Hundreds of thousands of acres of brush and forest burned. More importantly thousands lost their homes as fires moved across urban/rural interfaces to destroy communities. The entire town of Paradise, California was burned to the ground. Here in Ventura County, the Thomas Fire was the state’s largest fire by the time it was done, and hundreds lost homes. No other time in history have we been so focused on what will burn, why it will burn, and what we can do to have a “firewise” landscape.

In 2017 The Thomas Fire in Ojai, California was the largest brush fire in the history of California fire fighting. It was surpassed the following year by the Camp fire in Northern California.

Fire authorities around the world have advocated creating defensible spaces around homes that are clear of ignitable vegetation. Some authorities have mandated by law that mulch, pine needles and other debris be removed as a fire prevention measure near structures. There is a general recognition that any plant can burn. Even well irrigated plants will rapidly desiccate and become flammable in the face of strong wind and a heavy fuel load that is inflamed nearby.

Flammability of landscape around homes is dependent on several factors. Vegetation placement can obstruct or allow for fire fighters ability to reduce damage to a home. While it is natural to assume that avoiding flammable plants is a part of this process, there is no standard method for testing plant flammability. Many lists of firewise plants have unknown origin or are just guesses. Flammability can be assigned four dimensions: ignitability, sustainability, combustibility and consumability. These factors refer to time till ignition; time a material will burn; rapidity or intensity of burn and quantity of material that will burn. The components of combustion are influenced by moisture content, percentage of carbon, percentage of volatile compounds; surface area to volume ratio and other factors. The varied factors are usually not all studied at the same time and are not all equally important to plant flammability. Thus assessing flammability even within the context of a controlled study will only partially assess a material’s likelihood of burning under various conditions. Hence most of the lists are not that helpful.

While fresh wood chip mulches are consideder by some fire authorities to be a fire hazard, there is little published evidence of this and a single element like mulch can not be tied to flammbability of the landscape.

Behm et. al. showed that variations in flammability between plant species exists, and also that species within the same genus can vary widely in their flammable nature. Thus lists should not assume species in the same genus all have the same flammability. There is some thinking that flammability is an evolutionary trait that some plants exploit to their benefit, i.e. they are made to burn, such as the California Chaparral plant communities. Simply burning fuels in a laboratory setting does not take into account many of the factors associated with fuel burning intensities. Species differences notwithstanding, the amount of dead plant matter (dead twigs and leaves) vs. live matter, the arrangement of leaves, mulch and adjacent species all play a role in the flammability of the landscape itself which cannot be studied in a lab setting. Landscapes are “fuel bed complexes” with multiple elements that are not replicated in studies. For instance, small leaves from some shrubs ignite easily, but when burned as litter, develop low heat release rates because of poor ventilation.

Testing live plant materials alone is misleading because the flammability of an intact shrub is caused by the interaction of live matter with “necromatter”. Dead tissues are thermal catalysts which ignite live material. The ratio of necromatter to live matter influences flammability and is generally not well studied. Fire modelling also has a role in understanding what will burn. Both wind and slope increase the spread rate and the fireline intensity of burnable plants. Fire behavior characteristics on a given plant also are affected by both its physical and chemical characteristic — tissue mineral and water content have impacts on flammability. This bodes poorly for firesafe plant lists because lists do not consider plant physical or chemical attributes and if moisture levels are low it will burn regardless of its structure and geometry or its status on a list. Sometimes though a dense wall of well hydrated vegetation can save homes such as the avocado orchards that held back fire in the Thomas Fire in Montecito, Ca.

While lists don’t satisfy scientific rigor they are great for policy makers and homeowners who want to know what to plant. Unfortunately many lists are just compilations of other lists, none of which were based on research. Sometimes lists confuse one desirable characteristic with another, such as native plant lists that tout drought tolerance. Many drought tolerant plants are not fire resistant especially after a long dry period, indeed they often evolved to burn under such conditions.

For those that live in fire prone areas, fire resistant plant lists will always be an attractive or even required element of landscapes. Lists will not save a structure in the face of high winds and adequate fuel or embers. A defined defensible space around buildings, and maintenance of plantings that removes dead matter, maintains irrigation, and maintains proper distance from combustible surfaces will be more effective than choosing landscape plants from flammability lists.

References:
Fernandes, P.M. and M. G. Cruz. 2012. Plant flammability experiments offer limited insight into vegetation—fire dynamic interactions. New Phytologist 194: 606-609

Behm, A.L., M. L. Duryea, A.J. Long, and W.C. Zipperer. 2004. Flammability of native understory species in pine flatwood and hardwood hammock ecosystems and implications for the wildland –urban interface. International J. of Wildland fire 13: 355-365.

White, R.H. and W.C. Zipperer. 2010. Testing and classification of individual plants for fire behavior: plant selection for the wildland-urban interface. International J. of Wildland Fire 19:213-227.Facebook

Soil or dirt? It’s really up to you

FacebookDig up dirt. Treat like dirt. Dirt poor. Replace the word “dirt” with “soil” and you get phrases that make no sense. This is a roundabout way of explaining that “dirt” and “soil” are not the same things, either in idioms or in the garden. Yet many of us effectively turn our soils into dirt through poor garden practices.

This is dirt. (Photo from Wikipedia)

This is soil.

For the purposes of this post, we’re going to use a single criterion to distinguish between soil and dirt: one is a living ecosystem and the other is not. A thriving soil ecosystem contains sufficient water, oxygen, and nutrients to support bacterial, fungal, plant, and animal life. Regardless of soil type, about half of the volume in a living soil should be pore space and the other half soil particles. Half of the pore space should be filled with water and the other half with air. When we make choices about activities that affect garden and landscape soils, we need to be proactive in preserving both the particle-pore balance as well as connectivity between the soil and the atmosphere.

All soils have pore spaces regardless of their texture.

Pore size varies with particle size.

The only way pore space can be reduced is through soil compaction. So don’t do it.

  • No driving. If equipment must be brought in, put down a thick layer of wood chips to protect the soil, or at least plywood.

Not really the way to do park renovations.

These amenity trees quickly became liabilities, thanks to soil compaction during construction. {Photo courtesy of Jim Flott)

  • No naked soil. Bare soils are compacted soils. Mulch!

Basically dirt.

Wood chips covering real soil.

  • No rototilling. It grinds your living soil into dirt. Disrupt the soil as little as possible when you plant.

I have no words.

  • No stomping, pressing, or otherwise compacting the soil during planting. Let water and gravity do that work for you.

Let’s just press that pore space out of existence.

Mud it in! Let water and gravity settle new transplants.

The only way soil and atmosphere connectivity can be disrupted is by covering the soil with low permeability materials. So don’t do it.

  • No soil layering. Don’t create abrupt layers of soils with different textures. It interferes with water and gas exchange.

Soil horizons change gradually in natural soils.

Poor surface drainage indicates a perched water table caused by abrupt changes in soil texture (photo courtesy of Rich Guggenheim).

  • No sheet mulches. I’m sure you’re tired of hearing me say that and I am tired of saying it. Sheet mulches have less permeability than chunky mulches. That means oxygen and water have more difficulty getting through. Period.

The less porous the material, the more slowly gas diffuses through it. Read more about it in our recent article

Chips are great. Why ruin them with cardboard underneath?

Landscape fabric is even worse than cardboard, but the weeds love it.

And plastic? Dont even THINK about it.

Do use lots of groundcovers, chunky mulches, and hardscape in areas where there’s considerable foot traffic. They all protect the soil and are important parts of a well-designed, sustainable landscape.

Soils love all sorts of mulches.

Inorganic mulches protect soil, too.

If you just can’t get enough about soil science for gardens and landscapes, do check out this new publication by Dr. Jim Downer and myself.Facebook

Fertilizer—Friend or Foe to disease causing organisms?

FacebookGardeners that read this blog understand that minerals are absorbed mostly by plant roots as ions, and are essential for plant growth and development. Some minerals are required in parts per hundred, and are macro-nutrients while others are only required in parts per million or parts per billion, and are considered micronutrients. As long as enough of the 16 most essential minerals are available, plants grow and reproduce in a healthful way. When not enough of one of the essential elements are available, a deficiency occurs, and plants

Nutrient deficiency symptoms in new growth of Camphor tree

may present deficiency symptoms. Mineral nutrient deficiency symptoms are considered abiotic disorders. There are, however, cases where excess or deficiency of elements can be predisposing to disease caused by pathogens. Most some mineral elements do have a role in the development of disease caused by some pathogens but this is largely demonstrated in agriculture and often most home gardens do not suffer nutrient caused plant diseases.
Diseases can be either biotic with a living pathogen driving the disease or abiotic where a physiological condition is caused by the environment and host interactions. Mineral nutrients also are often implicated in abiotic disease.

 

Blossom end rot in tomato fruit

Perhaps the most famous one is blossom end rot of tomato. This disorder is seen by gardeners around the country and is widely attributed to calcium deficiency. Expanding fruit are a tremendous “sink” for nutrients like calcium and it was thought that if not enough calcium was available in soil the disorder would occur. It is accepted that localized Ca deficiency (in fruit) may play a role in the initiation of blossom end rot, but there are many other factors that lead to the full blown condition, some of which are not fully understood. The fact that blossom end rot (BER) occurs in calcic soils in California underpins the complexity of this disorder.  In many cases, simply adding calcium to soils does not correct the problem. Research in California suggest that the plant hormone abscisic acid (ABA) regulates water flow, the development of water conducting tissues, and calcium uptake in tomato. Researchers found that ABA treated tomatoes were cured of blossom end rot.  For gardeners, making sure plants are fertilized, and avoiding varieties susceptible to BER is the best course of action.

Soil-borne pathogens are perhaps most affected by minerals dissolved in soil solution. Minerals can act in specific ways (specific ion effects) or as total ion effects (osmotic strength or concentration) having direct impact on pathogenic propagules or on the host itself. In a biological disease relationship there are several possibilities:
• Specific ions harm or favor the pathogen.
• Specific ions harm or support the host.
• Ionic strength changes the root environment making the host weak and susceptible.
• Ions change the pH of the soil solution making it more or less fit for a pathogen or the host.
• Ions change the soil physical environment making it more or less fit for a pathogen or the host.

Root rot of annual color plant is a common find in many garden centers

While it is often espoused that the well “fed” or fertilized plant is resistant to disease, it is rarely borne out in published research on ornamental plants. Keeping a good nutritional level in nursery stock will not necessarily protect plants from many of the virulent pathogens that are capable of causing disease. Excess fertilization may lead to luxury consumption by the fertilized plant and can produce succulent growth that will exacerbate of such diseases as powdery mildew. It is well known that seedling diseases caused (damping off) are more severe with increased medium salinity and it was later discovered that increased soil salinity also increases susceptibility of ornamental plants to Phytophthora root rot diseases. Phytophthora is the most common pathogen associated with rotted roots in most gardens.

Plant mineral nutrition supports plant health in two basic ways (1) formation of mechanical barriers (cell wall strengthening) and (2) synthesis of defense compounds that protect against pathogens. The role of specific elements and their compounds is complicated and unique to each disease/host system. Certainly deficiencies of molecules such as calcium and potassium can interrupt either defense mechanism and if nutrients are supplied enough to prevent deficiencies there is little role of nutrients in preventing disease.
Root rot is a disease of thousands of ornamental plants and a serious problem in many gardens. Root rots caused by Phytophthora spp. occur in a range of nutritional and pH ranges. Nitrogen has been shown to lessen root rots and this is likely due to conversion of nitrogen into ammonia gas in soil which acts as a fumigant. Many studies found no relationship of nitrogen source to root rot disease development.  Calcium increases disease resistance to root rot in avocado and other plants. While it is understood that calcium has direct effects on plant membranes, root cell membrane leakage, cell wall thickness, and many other host factors, there are also direct effects on the pathogen in soil. Calcium ions reduce the production of disease spores and disrupt their ability to swim and find susceptible roots. When soils and soil less media are low in soluble calcium, when calcium is easily precipitated out of solution, or when the pH is high and limestone minerals decrease the availability of calcium, root rots will be able to infect.  Increases of sodium ions in soils and soil less media can also increase Phytophthora caused diseases.

Some non-essential elements have become popular as disease suppressants. Research has shown Silicon increases resistance of plants to powdery mildew, root rots and to stress in general. Silicon is implicated in strengthening cell walls as well as in defense protein production in plants. But not all plants are capable of utilizing silicon, so its role in plant defense is limited to those species (mostly grasses) capable of metabolizing it. Silicon has been erroneously recommended for widespread disease prevention. Its actual utility is likely very narrow. Much more study is necessary to understand silicon’s role with ornamental plant-pathogen systems. Gardeners will find little use for silicon as a disease prevention too.

Plants extract minerals from container media and garden soils—the process is complicated; it is mediated by the substrate/soil, water chemistry, temperature and the applied minerals (fertilizers) as well as by plants. Gardeners should apply fertilizers that can supply a constant low level nutrient charge or rely on nutrients provided in mulches. Fertilizing decisions are best guided by having a low cost soil analysis by a University lab. Supplying extra soluble calcium may be helpful in managing root rots, especially where heavy rainfall is normal and soils may be highly leached. Preventing salt build up (by leaching irrigation) in high salinity soils (low rainfall places) and that can occur when media dries out, will also help plants avoid infection by root rot organisms. It is good to remember that fertilizers never cure diseases, but there may be a role in preventing disease when plants are nutrient deficient.
References
Baker K.F. 1957.  The UC System Producing Healthy Container-Grown Plants. University of California Division of Agricultural Sciences Agricultural Experiment Station Publication #23.

Cherif M., Asselin A., Belanger R.R. 1994. Defense responses induced by soluble silicon in cucumber roots infected by Pythium spp. Phytopathology 84:236-242.

Datnoff, L.E., Elmer, W.H. and D. M. Huber eds. 2007. Mineral nutrition and plant disease. APS Press The American Phytopathological Society, St. Paul, MN. 278pp.

Downer A.J., Hodel D.R., Matthews D.M., Pittenger D.R. 2013. Effect of fertilizer nitrogen source on susceptibility of five species of field grown palms to Fusarium oxysporum f. sp. canariensis. Palms 57: 89-92.

Duvenhage J.A., Kotze J.M. 1991. The influence of calcium on saprophytic growth and pathogenicity of Phytopthora cinnamomi and on resistance of avocado to root rot. South African Avocado Growers Yearbook 14:13-14.

Faufeux F., Remus-Borei W., Menzies J.G., Belanger R.R. 2006. Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiology Letters 249:1-6.

Kauss H., Seehaus K., Franke R., Gilbert S., Dietrich R.A., Kroger N.. 2003. Silica deposition by a strongly cationic proline-rich protein from systemically resistant cucumber plants. Plant J. 33:87-95.

Lee B.S., Zentmeyer GA. 1982. Influence of calcium nitrate and ammonium sulfate on Phytophthora root rot of Persea indica. Phytopathology 72:1558-1564.

Ma, J.F.  2011. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Science and Plant Nutrition 50:11-18.

Macdonald J.D., Swiecki T.J., Blaker N.S., Shapiro J.D. 1984. Effects of salinity stress on the development of Phytophthora root rots. Cal Ag 38:23-24.

Messenger B.J., Menge J.A., Pond E. 2000. Effects of gypsum on zoospores and sporangia of Phytopthora cinnamomi. Plant Dis 84:617-621.

Powell C.W., Lindquist R.K. 1997. Ball Pest and Disease Manual (2nd ed). Ball Publishing Batavia Publishing. 426 pp.

Span T.M., Schumann A.W.  2010.  Mineral nutrition contributes to plant disease and pest resistance. University of Florida Publication #HS1181. http://edis.ifas.ufl.edu.

Tonetto de Freitas, S., K.A. Shackel and E. J. Mitcham. 2011. Abscisic acid triggers whole-plant and fruit specific mechanisms to increase fruit calcium uptake and prevent blossom end rot development in tomato fruit. J. of Experimental Botany 62:2645-2656.

Daylor, M.D. and S. J. Locassio. 2004. Blossom-end rot: A calcium deficiency. J. of plant Nutrition 27: 123-139.

Zentmeyer G.A. 1963. Biological control of Phytophthora root rot of avocado with alfalfa meal. Phytopathology 53:1383-1387.Facebook

Hydroponics, Aquaponics, & Aeroponics, Part Deux

FacebookLast month I shared some basic info on the major techniques for growing plants without soil, namely hydroponics, aquaponics, and aeroponics.  With such interest in these topics, I thought it would be good to dive a little further into the technologies used.  I’ll provide a bit of basic information about each type of system used for production and provide some resources for further technical reading if you’re interested in learning more. For some simple diagrams of the systems, check out this link (we don’t know if we can “borrow” the images, so we didn’t copy them over).

DEEP WATER

“Deep” water may be a bit of a misnomer, as it usually brings to mind thoughts of mysterious sea creatures living in the dark depths of the ocean.  Technically, the “deep” water can be just a few inches, as it is deep in reference to other methods.  This is perhaps the simplest and least expensive of the systems and can be a great entry point for beginners.

For deep water culture, the nutrient solution is held in a large container with some sort of floating support holding the plants.  The container is at least a few inches deep and holds a relatively high volume of water.  There are some containers that are designed for deep water hydroponics, but repurposed containers will work as long as they are food safe (meaning that they do not leach or break down).  Large plastic totes or even plastic buckets can be used.  As for supporting structures for plants, Styrofoam is the most common.  There are cell trays made of Styrofoam that are commonly used in production of small crops (or for growing transplants, which is a common use of this technique).  Foam boards with holes to hold pots can also be used.  Back when I was in grad school we developed hydroponic systems in my plant propagation class using foam insulation boards floating in large plastic totes.

One thing that you have to keep in mind for deep water culture is the need to incorporate oxygen into the system.  We often talk about the issue of overwatering houseplants and how it can damage roots  due to hypoxic, or low oxygen, situations.  Imagine how roots growing only in water would create situations for poor root and plant growth.  In all the other systems water flow helps incorporate oxygen into the water.  In deep water, there is no moving water and therefore no air incorporation.  The most common tool used for this, especially for small systems, is an aquarium air pump and air stones that help create bubbles in the system.

One benefit of this system is that it has a low level of risk when it comes to system failure.  There are few moving parts to break down and loss of electric doesn’t result in roots drying out due to loss of water flow.

EBB & FLOW

Ebb and Flow troughs in an aquaponics system. Note the floating styrofoam rafts. (I did research in this system during my master’s program.)

These systems, also called flood and drain systems, are one step of complexity above the deep water systems by introducing water flow.  Plants can either float as in deep water culture or be held in media that fills the container.  While many containers can be used, the most common are longer channels that promote water flow from one end to the other.  This system also introduces a reservoir of some sort that holds excess nutrient solution and a pump to deliver it to the container.  The level of water in the container is controlled by a raised drain pipe where solution exits the system back to the reservoir.

The DIY system I build using gutter with the Rwandan students (mentioned in the first installment on hydroponics) is ebb and flow.  The drain from the gutters is a few inches high within the channel, so the water raises those few inches before it drains out.  Some producers use long channels the width of those floating cell trays to grow plants in a relay fashion, planting them on one end and move them along as new rafts are added until they are harvested on the other end.

This system is common not only in hydroponics, but aquaponics as well.  Instead of a nutrient solution reservoir, the water from the tank(s) holding the aquatic stock (commonly fish, but could also be crustaceans like shrimp) is pumped into the plant channels and flows back into the system.  Systems may be based on continuous flow into and out of the system, but most commonly a timer is used to have multiple periods of flow and rest mainly as a means to reduce power usage.

NUTRIENT FILM TECHNIQUE (NFT)

This system evolved one more step above ebb and flow by limiting the volume of water used in the system.  Here, water is pumped from the solution reservoir to shallow channels where plants are held in pots or blocks of inert media such as rockwool.  Roots are not submerged in water, but instead grow within a thin film of solution that flows almost continuously through the system.  These channels have a slight slope where the end with the drain is a little bit lower than the end where the water enters.  The slope can be adjusted slightly to affect the speed of the water through the system.

This system is becoming common in production of leafy greens and herbs because it uses a much smaller volume of water.  But that small volume of water also presents a risk.  If there is a power failure or a clog in the tubing that delivers water to the system the roots can very quickly dry out and crops die, especially in situations of high heat and light.

DRIP SYSTEMS

Dutch bucket method for trellised crops

Perhaps one of the most commonly used systems across the world due to their simplicity, drip systems could be compared to a drip irrigation system used in the field.  Drip emitters are used to supply nutrient solution to plants in containers containing an inert media such as peat, coir, perlite, or grow stones. The containers can be pots, buckets, or bags/blocks of the media and are most commonly placed on the floor of the greenhouse or growing location with gutters to collect the solution that flows through the containers. A common method is using long, narrow bags filled with coir or other media referred to as the slab method.  Another common method, called the Dutch bucket method, uses buckets with drain holes in the bottom, commonly placed on a greenhouse floor.  Water trickles down through the media and roots and leaves the system through the bottom of the container.

Systems vary in the collection of the used solution.  Some may collect the solution that flows into the gutter and collect it in a reservoir to be reused, however some systems may allow the solution to flow out as waste.  These differences depend on the needs of the producer, available resources, and local regulations.

One of the comments that we got on my first article was about people growing container plants could technically consider it a form of hydroponics.  That might be a bit of a stretch, but you could technically consider growing container plants in soil-less media as drip or flow through hydroponics if you provide all of the nutrients through soluble fertilizers in the water.

WICK SYSTEMS

Typically used for small scale production, wick systems are one of the simple ways to grow plants without soil in terms of technology.  In this system, a passive wick uptakes nutrient solution from a reservoir and pulls it into the media (usually absorbent itself).  This wick could be a true wick, like a string made of absorbent material that inserts into an individual pot or it could be a mat made of absorbent material that pots or trays sit atop.

I’ve seen this commonly used perhaps not strictly in hydroponics, but for watering individual plants like African violets where yarn or twine is inserted into a drain hole in the pot and sits in water.  Technically this could be hydroponics if the media doesn’t contribute nutrients to the plant and they are all contained in the water instead.

KRATKY METHOD

This is probably the simplest of the methods and is used primarily by small scale producers and home growers.  It is similar to the deep water method in that there is no flowing water, but it is even simpler because there isn’t even an air bubbler.  In this method, plants are grown in large containers or buckets and the structure that supports them is fixed to the top of the container rather than floating.  As the growing solution is used up, the level of solution in the container decreases.  This creates a zone where the roots are exposed to air, providing the oxygen that the roots need.  The solution is kept at a level where at least the bottom portion of the roots are submerged in the nutrient solution.

AEROPONICS

Probably the most complex or technical system, aeroponics supplies water and nutrients to plants through a mist or aerosol emitted through pressurized nozzles.  The roots hang in a chamber without media and are misted every few minutes with nutrient solution.  The excess solution drops to the bottom of the chamber and is reused.  This system uses very small amounts of water, which can be beneficial for growing in dry areas but also creates a potential risk if the system or power fails.  Just like the NFT system, any prolonged period with out water will quickly result in plant damage or loss.  Beside power loss, this systems is also prone to clogged emitters, since the pressurized nozzles rely on very tiny openings to pressurized the solution.

Keep in mind that several systems that are sold for home or small scale production that are labeled as aeroponic, such as AeroGarden and Tower Gardens, don’t technically use aeroponics to grow since the solution isn’t applied as a mist or aerosol.  I would say they operate more like a vertical NFT system where water flows over the roots as it travels down the chamber.

RESOURCES

Hydroponic Greenhouse Production Resources – UMass Extension

Introduction to Hydroponics – Johnny’s Seed

All You Need to Know to Choose a Hydroponic System – Upstart Farmers

How to Start Growing with the Kratky Method – Upstart FarmersFacebook

Trees and Turf a NO GO

FacebookIt seems so simple to plant a tree.  But to grow a tree is more difficult!   In many parts of the United States there is enough water for trees and turfgrass, but it is often a bad idea to mix the two. You may have observed that sometimes young trees do not grow as well when planted in turfgrass. Certainly this is a generalized view and tree/turfgrass genetics are very different between their respective species. So it is natural to expect different outcomes when planting different species of trees in any landscape setting, turfgrass notwithstanding.  Another factor to consider is time. The day we plant a tree is not the same time reference as ten years later. In ten years, the tree if it is successful, may have modified

A basic incompatibility: Eucalyptus growing in warm season turfgrass (kikuyugrass) resulted in excess surface moisture and crown rot of the eucalyptus killing it.

its environment significantly, making turfgrass cultivation more difficult.  Most tree/turfgrass difficulties begin when the tree is young–as a newly planted tree.  If it succeeds in growing a large canopy, difficulties will ensue for the turfgrass.  Sometimes turfgrass  cultural requirements (frequent irrigation) can predispose trees to root or root-collar diseases such as Phytophthora.

Trees and turfgrass have some similar and very different requirements from their respective landscape settings. Both trees and turfgrass require sunlight to photosynthesize and grow. Both would usually prefer full sunlight without shade. As trees grow they shade the turfgrass sward beneath their canopies. Turfgrass can lose density, and become a thinner sward that is more susceptible to diseases such as powdery mildew. Trees grow roots near the soil surface and as they become larger, some trees may even proliferate roots near the mowing height of turgrass and suffer repeated injury from mowers, also increasing the risk of pest invasion into the tree. Both trees and turfgrass need water and soil minerals to grow. While soil minerals are usually abundant enough for both, water is often limiting for one or the other in this landscape combination.

String Line Trimmer’s or weed whips will injure both young and older trees in the landscape. Image: Chicago Tribune.

The maintenance practices required for turfgrass often injure trees, especially young trees. Mowing near trees can injure the bark on the lower stem especially if the mower comes to close and actually scrapes the young stem. Since grass will grow longer where the mower can’t reach right near a tree stem there is a temptation to use a string line trimmer or weed whip to maintain the grass that has shot up around the tree stem. The repeated use of string line trimmers around trees removed young bark and can “girdle” the tree stem. While trees can survive these practices their growth rates are slowed considerably.

Constant injury from mowing equipment has injured this elm killing the tissue on a major root flare. This is now an entry point for decay and other fungi.

One approach to having trees growing with turfgrass is to remove a ring of turf away from the tree and replace it with mulch. This eliminates the need to maintain the turfgrass near the trees stem and root flare. Richard Harris and others (1977) found many years ago that a one foot circle removed around the stem of newly planted trees would increase their establishment rates compared to trees with turfgrass growing right near the stem. Whitcomb (1979) also recognized that turgrasses are competitors with newly planted shade trees. Whitcomb’s earlier research (1973) showed reduction in root density when trees were planted in a sward of Kentucky bluegrass.

A ring of mulch replacing turfgrass around this tree keeps turf maintenance equipment from injuring it.

As trees grow it is important to widen the ring around them giving more room for mulch and reducing the competing turfgrass underneath their expanding canopies. This is a general concept; some trees can live in turfgrass without problems as long as resources are not limiting. Riparian trees such as sycamore can grow well in swards of turfgrass, but other species such as Peruvian pepper (Schinus mole) tend to languish.

Trees are adapted to drop leaves, this is termed litterfall and it becomes part of their natural mulch. Litterfall tends to prevent annual plants such as grasses from developing. Fallen leaves, fruit and twigs are recycled by fungi providing nutrients back to the tree. Turfgrass cultivation interrupts this process and while trees obtain some of the nutrients supplied to turfgrass, as Whitcomb observed, turfgrasses are fierce competitors for nutrients so young trees are especially susceptible to nutrient deprivation in turfgrass swards. For the best results in your

This young tree has an expanding mulch area to help sustain it and reduce competition from turfgrass.

garden, it is best to maintain some distance between young trees and turfgrass. It is optimal if the mulched (no turf) area under a tree can expand to its dripline as it grows.

 

 

 

 Facebook

DIY Hydroponics: Going soil-less at home and abroad

FacebookIt seems that as interest in gardening grows, especially among younger generations, interest in different techniques that home gardeners use and different plants they grow are also on the increase.  You see the old standbys like straw bales and containers emerge.  Terraria, succulents, and air plants are having their moment.  And all kinds of technology driven indoor growing systems are all over the web, mostly hydroponic, but some aeroponic and aquaponic as well (we’ll talk about the difference in a bit – if you’re just here for that, skip the first 2/3 of the article).

I had been thinking about getting one of those new techno aeroponic growing systems as a demo for my office as a discussion starter for those interested in controlled environment growing whether on the homework commercial scale.  There is a general interest and need for basic education for hydroponics and aquaponics in the area that I hope to build extension programming around, so having something at the office could provide some interest from walk-in and social media clients.   I had dusted off a first generation AeroGarden that I found in the storage shelves in the office storage catacombs and set it up in my office.  It is a far cry from the new models I saw in those online ads that are outside of my budget for “toys to show off at the office.” It doesn’t have nice LED lights or connect to my phone via Bluetooth like the fancy new models.  Given its age, it produces more noise and heat than the lettuce and herbs I’ve tried to grow in it.  Maybe I’ll be able to get one of the fancy models one day.

Then I remembered a book that an urban ag friend of mine had written on building DIY hydroponic systems from common building materials and resolved to not only build a system, but incorporate it into my programming somehow.  The book, appropriately titled “DIY Hydroponic Gardens: How to Design and Build an Inexpensive System for Growing Plants in Water” by Tyler Baras shares plans for building a variety of types of hydroponic systems using basic building materials like gutters and lumber, drip irrigation tubing and fittings, and various other bits and bobs.  Tyler had been a featured speaker for the West Virginia Urban Agriculture Conference that I started and hosted when I worked for WVU Extension, so the book was on my radar – I placed an order.  (Note: I don’t get a kickback for sharing the book – just sharing a good resource that happens to be from a friend.)

Teaching Hydroponics to an Unlikely Audience

Image may contain: 3 people, including John Porter, people sitting, outdoor and nature
Learning traditional weaving methods using banana leaves. Banana leaf weaving is a common industry in rural Rwandan villages that allows women to provide modest incomes for their families.

As luck would have it, I had an opportunity to put the book, and my DIY hydroponic skills, to the test.  Our university does quite a bit of work with and in Rwanda and in May I had the opportunity to travel to Rwanda as part of a study abroad program with my Ph.D. advisor.    Rwanda is a very small country, just under the size of Massachussets, with a very big population by comparison – 12 million vs 7 million!  Feeding that many people is a struggle, and even though Rwanda produces a lot of produce (and more lucrative export crops like coffee and tea), it still imports a lot of its fruits and vegetables.  We were studying how innovation spreads in rural areas, and just before our trip I found a news article sharing that there would be an upcoming $8M USD ($8B RWF) investment in hydroponics in the country in order to increase production on the limited amount of land available.

In June I was scheduled to teach a group of Rwandan exchange students that are part of a sponsored program at the university, and remembering the planned investment in hydroponics I planned to add DIY hydroponics to the curriculum.  This is fitting, since most small-scale operations would rely on finding what materials would be locally available.  While the operations started by the investment would likely bring in “real” hydroponic systems, if small scale producers want to use the technology or if individuals want to build skills, they’re going to have to use what is at hand.

UNL CUSP Scholars students from Rwanda build a DIY Hydroponic System

Planting leafy greens and strawberries in the hydroponic system.

 

 

 

 

 

 

 

 

It was interesting teaching an audience who were interested in learning about the new technology, but have little experience or general knowledge on the subject.  Even more interesting was the fact that many of the students had not used or even seen some of the basic power tools we used in building the system.  I’m no shop teacher, but in the end the students not only learned a little bit about hydroponics and hydroponic systems, but also some skills using tools that they can apply in other applications.

Proudly showing off the team’s vertical hydroponic system.

 

 

 

 

 

Hydroponics, Aeroponics, & Aquaponics – Oh My!

Earlier I mentioned that there are differences between hydroponics, aeroponics, and aquaponics.  In some ways, they use similar basic setups.  All are based on soil-less growing using an inert media to support plants, supplying nutrients and water directly to the plant roots, and providing light to the plants using either natural sunlight or supplemental lighting.  Differences come from the source of plant nutrients and from how they are delivered to the plant.  I thought I’d take a few minutes to talk about the basics of each of the techniques so you can understand the differences just in case you want to buy or build your own system.  If there’s interest, I hope to focus on hydroponics and controlled environment agriculture over my next few blog posts – tell me what you’re interested in learning.

Most people are familiar with the concept of hydroponics.  This technique relies on roots being submerged in a nutrient-rich solution where the nutrient content is engineered from a variety of mineral sources.  There are a variety of different systems (that will hopefully be the subject of an upcoming blog) where the root zone interacts directly with the solution.  In some cases, roots are submerged in a large volume of solution while in others a film or shallow stream of water flows through the root zone.  Systems where roots are submerged in the solution may simply be a large reservoir where the plants float on top where systems relying on flow may involve a pump.  Movement of water adds another plant need -oxygen, which is required for respiration by the roots.  In systems where there is no flow, air is often pumped in to provide oxygen.

Most flowing systems are recirculating, where the solution returns to a reservoir and is pumped back into a reservoir to be reused.  While it may seem counterintuitive, these recirculating water based growing systems have been touted as production methods that conserve water.  That’s why some of the leading hydroponic production and research comes from areas of the world where water is scarce. Less common are flow through systems where water and nutrients are not recaptured but discarded after initial use.

Aeroponic systems have much of the same basic setup but instead of the roots interfacing directly with water solution it is applied as a pressurized mist.  These systems generally use a much smaller volume of water, but there are some drawbacks.  Failure of the system, such as an electric outage or clogging of the nozzles that pressurize the mist (which is a common occurrence) can quickly result in plant failure since roots can dry out quickly.  Several systems that are sold commercially that market themselves as aeroponic, such as the AeroGarden or Tower Gardens, are more similar to a flowing hydroponic system than a pressurized mist aeroponic system.

The plant growing structures of aquaponics are similar to those of hydroponics, with the addition of larger reservoirs to accommodate the addition of aquatic livestock such as fish (or sometimes crustaceans).  The waste produced by the stock provide the nutrients needed by the plants rather than an engineered nutrient solution.  These systems require having the technical knowledge to meet the needs of the aquatic stock and balancing those with the needs of the plants.  The addition of the aquatic stock also introduces a microbiome of bacteria and fungi, many of which are required for animal health but can also introduce pathogens that can negatively affect human health.

Are you interested in learning more about these systems?  What do you want learn about in hydroponic or other systems? Let me know in the comments and I’ll try to base some future articles on what our readers are interested in.Facebook