How would your garden handle a 12-inch rainfall?

Early in August, Hurricane Debby made landfall in the Big Bend of Florida’s Gulf Coast, crossed into Georgia east of Valdosta, and moved leisurely northeast. The remains of Debby crossed the coast, briefly moved over the Atlantic Ocean before turning northwest and making another landfall northeast of Charleston then headed north into New England. While the winds decreased quickly once Debby made landfall, it dropped huge amounts of rain along its path. The highest official rainfall amounts topped 12 inches, but I heard of some unofficial measurements of 20 inches in a few isolated locations. Pictures of erosion in peanut fields and standing water in cotton stands filled my inbox, and it made me wonder how a garden would cope with so much precipitation in such a short period of time. I want to take a few minutes today to discuss it.

Initial estimate of rain from Hurricane Debby, August 8, 2024.

What happens as the rain is falling?

Tropical rainfall (or rain from any heavy thunderstorm) contains a large volume of water in droplets falling from a height of several miles. Generally, the raindrops are large and fall in a shape that looks more like a hamburger than the typical teardrop we often see in pictures. As the drop falls, the bottom flattens out under the influence of the air that it is falling through and surface tension holds the drop in a rounded shape. Raindrops fall at different speeds depending on how big they are. Large raindrops associated with warm weather and strong updrafts like the ones we see in thunderstorms and hurricanes can have a falling speed of up to 20 miles per hour, while smaller raindrops fall at lower speeds of 2 miles per hour and drizzle at much slower speeds of a few feet per second. The speed at which the drop falls is known as its terminal velocity and is reached when the force of gravity pulling the drop downward matches the friction of air slowing the drop down as it falls.

Leaves in rain, Rob Hille, Commons Wikimedia.

What damage does the rain do when it hits the ground?

When the falling raindrops hit leaves, they can cause damage to the plants. The biggest raindrops are heavy and falling fast so they can break off or damage the foliage, although not as much as hail does. We see this especially in fall when the leaves are loosely attached to the branches after they start to change color and die. A heavy rain (or snow if you live in a colder area) can remove a lot of leaves in a short time, making the fall colors muted or non-existent as the leaves are washed to the ground.

Leaves in puddle, https://www.flickr.com/photos/cogdog/9606144702/, Cogdogblog, Commons Wikimedia.

When the rain hits bare ground it can cause soil particles and microbes to splash upward. Farmers know that rainy weather can lead to more diseases because of the enhanced transmission of fungal spores and other pathogens up onto the crops. Of course, the wet soils can also provide a lot of moisture in the air around the plants that can fuel the development of fungal diseases like powdery mildew, especially when plants are close together with little ventilation by the wind. Mulch may be able to help reduce the transmission of spores but creates a moist environment around the roots of the plants that can cause problems if it keeps too much water in the ground. One advantage of arborist wood chips is that the wood absorbs moisture and releases it later and the pores between wood chips are large and can store a lot of water before it runs off. It can also preserve soil moisture between rain events and it can reduce the impact of raindrops on the soil surface, limiting nutrient loss and splashing.

Erosion of peanut field in Screven County, GA, following Hurricane Debby, GA Peanut Growers.

Where does the rain go when it hits the ground?

Once rain hits the ground, some of it sinks into the ground (infiltration) while the rest might either run off if there is a slope or stand in a puddle if there is a low-lying or flat area. The rate at which water can enter the soil depends on the characteristics of the soil. If it is gravel or coarse sand, it can take in as much as 0.8 inches of water per hour. Sandy loams can take in 0.4 to 0.8 inches per hour, loams 0.2 to 0.4 inches per hour, and clay soils less than 0.2 inches per hour. The rain can also compact the soil, making the movement of oxygen around the roots more restricted. The water that does not sink into the soils will either sit at the place the rain has fallen or will move downhill under the force of gravity. Flowing water will often carry a lot of soil and debris with it, so the movement of topsoil and nutrients like nitrogen from field to stream can cause problems for both environments. Silt from the floodwaters can cause loss of oxygen in streams and murky conditions affecting the stream health or the silt can be deposited in low-lying areas. In the biggest floods, large deposits of sand can ruin fertile bottomlands by covering healthy soil with thick deposits of unproductive silt and sand. The erosion can also dig deep trenches through gardens and farm fields, leading to loss of plants and making the movement of farm equipment across that rutted land difficult especially since it can also get bogged down in the mud.

If the water pools in a low-lying area the soil can become saturated for a long time. This causes damage to the plants standing in the water because without oxygen, the roots die. In the short term the loss of oxygen can cause the plants to wilt. If it lasts for a long time it is likely to lead to the death of the plants in low-lying areas. In Hurricane Debby, some farmers are starting to see flooded cotton plants become reddish and stop growing, reducing the eventual yield of the crop. The dying roots can also give off ethylene gas, hastening the ripening of crops like tobacco and shortening the time that farmers have to harvest it before it rots. Farmers are often told to harvest crops that grew in flooded areas separately from upland crops because the negative impacts of oxygen deprivation can stunt plants, ruining their yields and increasing the likelihood of aflatoxin in peanuts or other toxins which can decimate the value of the crop.

https://scgrower.com/wp-content/uploads/2024/08/image000002.jpg?w=1024
Partially flooded watermelon field, B. King, The South Carolina Grower.

What can gardeners do to prepare their gardens for heavy rains?

In the future, the frequency of heavy rains is expected to increase in the United States as well as other parts of the world because of more water vapor in the atmosphere as the planet warms. What can gardeners do to make sure their gardens can withstand heavy rain events? The first thing to do is to understand what type of soil you have and how much water it can absorb. If you have sandy soil, heavy rain will have less of an effect than clay soil but it might mean you have to water a lot more often. In Debby, some areas that received 12 inches of rainfall needed irrigation less than a week after the storm moved through because the sandy soil of the coastal plain just does not hold much water. The next thing you should consider is the local topography of your garden. Are there areas that are natural channels for water? Make sure those areas are lined with material and plants that can withstand water and reduce erosion. If you have low-lying areas, use those to plant rain gardens with plants that are more adapted to wet conditions.

Rain is a necessary part of gardening unless you live in a desert and provide your own water to your gardens, but it can cause a lot of damage if the water is not managed carefully. Take the time to study your garden and understand where the water will flow and your garden will be much more likely to take a 12-inch rainfall in stride with minimal damage. It might even thrive!

Landscape of leaves after rain, Arushan, Commons Wikimedia.

Weeding out the Pseudoscience in Companion Planting

A polycultural landscape mixing vineyards and annual crops with woody hedgerows and trees in Charente, France. Photo courtesy of JLPC through Wikimedia.

As gardeners, we often assign human characteristics to our plants as a way of feeling more connected to them. We talk about their preferences and dislikes for certain environmental conditions and even for each other. The idea that plants have feelings has caused many to believe that plants are sentient and capable of making deliberate choices. (We’ve discussed plant sentience in previous posts that you can see here, here, here, and here.)

I could spend my time debunking all the books, websites, and social media accounts that promote the pseudoscientific side of companion planting. But this popularized version is a horticultural zombie: it never dies. Instead, I’d rather discuss the ways that plants can change their environment physically, chemically, and biologically – which can influence the survival of other plants. The table below summarizes these methods.

Table borrowed from “Gardening with Companion Plants.”

I encourage you to download and read my recently published Extension manual – it’s free and peer-reviewed. In addition to providing solid scientific advice, it will help you understand why the classic example of companion planting – The Three Sisters – may be of historic and cultural interest but is unlikely to benefit plant productivity or soil quality.

Three Sisters Garden next to the Harry and Jeannette Ayer House, Onamia, Minnesota. Photo courtesy of Wikimedia.

Below are some evidence-based companion planting strategies for your gardens and landscapes. More are also available in the Extension manual linked above.

  • Perennial companion plants will take a year or two to establish. Annual companion plants should be used if immediate benefits are desired.
  • If you are growing perennial crops, avoid using annual companion plants that require yearly soil disruption. Crop growth and yield can be negatively affected.
  • Use living mulches on pathways, between rows in vegetable gardens and orchards, and other locations that are not densely planted to reduce competition. Living mulches play a crucial role in protecting soil from erosion as well as biological and chemical degradation, and this improvement may outweigh any drawbacks from competition.
  • To reduce competition among desirable plants, choose species whose roots are less likely to interfere with one another. Intersperse large taproot vegetables like carrots and radishes with those whose root systems are shallow and widespread, like corn, onions, and lettuces.
  • Avoid invasive species and aggressive native plants. They will be overly competitive for resources like sunlight, resulting in reduced growth and vigor of other species.
  • A well-chosen organic mulch will improve plant growth and productivity. A woody organic mulch, such as arborist wood chips, will enhance mycorrhizal populations, improve overall soil health, and control weeds. Arborist wood chip mulches also house predatory spiders and insects, such as ground beetles.
  • In vegetable gardens, try to intercrop different species so that individuals of the same species are as far apart as possible from each other. This will reduce the ability of pest insects to infest an entire crop.
Intercropping coconut and Tagetes erecta (marigold) in Kerala, India. Photo courtesy of Ezhuttukari through Wikimedia.

Earthworms: The Good, The Bad, and The Ugly

Earthworms have held a secure place in the hearts of many gardeners for quite some time. Charles Darwin himself was endlessly fascinated by these organisms (publishing an entire book about them in 1881) writing: “it may be doubted whether there are any other animals which have played so important a part in the history of the world…”.  

Nightcrawler/Common Earthworm (Lumbricus terrestris). Photo: Joseph Berger, Bugwood.org

Recognized for their benefits to soils, including improvements in water infiltration, aeration, porosity, tilth, organic matter, beneficial microbes, and the list goes on, it is not difficult to see why. These positive impacts can be seen in home gardens and agricultural operations alike, with studies showing significant improvements in crop production correlated with the presence of earthworms. As such, terrestrial earthworms are often referred to as ‘ecosystem engineers’ due to their immense impact, and have been intentionally (and accidentally) introduced to previously worm-free areas. Many of these impacts and benefits are highlighted by Sjoerd Duiker and Richard Stehouwer’s earthworm article for Penn State Extension.

That being said, we have also started to hear a lot more about “invasive earthworms”, “jumping worms”, “stink worms”, – paired with statewide and regional campaigns encouraging people to reduce human-caused introductions and spread of non-native earthworm species in areas where they could cause significant harm to natural ecosystems and major hassles for managed ecosystems as well.

With all kinds of variable information out there, I thought it would be fitting to elaborate on the topic of earthworms, with the hopes of educating myself (and fellow readers) on some of the history, science, and misconceptions on this pretty popular garden-related topic.  Having personally worked in North American horticultural systems, much of this information will be tied to the trends that we observe here, however I will also share some resources at the end that will elaborate on earthworm trends outside of North America (for those interested in learning more about the topic).

Earthworm Biology

Before we get into the nitty gritty, let’s learn a bit more about earthworm biology. There are thousands (an estimated 3000-7000) of earthworm species around the world, and these can be found on every continent except Antarctica (because earthworms cannot survive in permafrost or underneath glaciers). Most earthworm species vary in size from 10 millimeters (0.39 inches) to over a foot (12-14 inches) in length. There are even giant earthworms: such as the giant Oregon earthworm that is 4.3 feet (1.3 meters in length), the Australian giant Gippsland earthworms which can grow to 9.8 feet (~3 meters) in length, and the giant African earthworm with the largest earthworm specimen ever recorded, measuring up to a staggering 21 feet (6.7 meters) in length.

These thousands of earthworm species can be divided into 3-main groups:

  • Compost and litter dwellers (Epigeic)
    • This group feeds on leaf/crop litter, and as such, can be found at the interface of litter and soil (around the soil surface). These earthworms are typically smaller in size than the other groups, do not consume large amounts of soil, are not as good at burrowing, and are also used in composting systems.
      Example: red wigglers (Eisenia fetida)
  • Topsoil dwellers (Endogeic)
    • Species in this group live within the top few inches of soil, subsisting on partially decomposed organic matter present within the soil. These earthworms create horizontal burrows, filling them with their excrement (after ingesting large quantities of soil). These species can be identified by their lack of skin pigmentation, appearing grey, blue, yellow, white or pink.
      Example: angle worms (Aporrectodea caliginosa)
  • Subsoil dwellers (Anecic)
    • This group can be found deep within the soil (up to 6 feet below the surface), living in permanent vertical burrows. They require plant residue on the soil surface in order to survive. They also ingest large quantities of soil, and deposit their excrement at the soil surface.
      Example: common nightcrawler (Lumbricus terrestris)
Three main ecological groups of earthworms. Image: Nico Eisenhauer (https://www.researchgate.net/publication/340392301_The_intestines_of_the_soil_the_taxonomic_and_functional_diversity_of_earthworms_-_a_review_for_young_ecologists)

Earthworms (Clitellata) are a class in the phylum of annelids (segmented worms). They can be characterized by their clitellum (a reproductive band that secretes a fluid to form a cocoon for their eggs). They have both male and female reproductive organs, though they require another individual for mating (where their eggs are fertilized by another’s sperm and vice versa). Depending on the species, they can produce between 3 to 1000 cocoons (containing anywhere between 1 to 10 eggs) per year. A majority of this occurs in the spring or early summer.

Like many organisms, environmental conditions and human management practices can have significant impacts on their populations and activity. Moisture, temperature, soil texture, pH, and availability of food are some of these environmental factors that can have a considerable impact. Although excess moisture is not ideal, earthworms can survive in high moisture conditions if oxygen availability in the water is sufficient. In dry conditions, they can enter a temporary hibernation stage (diapause), descend deeper into the soil, or even die (which can reduce earthworm populations in many areas during the summer months and in prolonged periods of drought).

Management practices such as reduction in tilling frequency, soil amendments (such as compost and manure), crop rotation, surface plant/crop residue, and use of certain fertilizers and lime are often linked to favorable impacts on earthworm populations. Whereas increased tillage, soil acidification, removal of surface crop/plant residue, and the use of toxic products such as certain pesticides are associated with a negative impact on earthworm populations and activity. (You can learn more about these in the Penn State Extension earthworm article).

History of Earthworms in North America

There are approximately 300 species of earthworms native to North America, and these are primarily found in previously unglaciated areas (such as the Pacific Northwest, South-Eastern U.S., Mexico, Central America, and the Caribbean). In the rest of the continent, most of our earthworm species were wiped out during the last ice age either through direct glacial cover or frozen ground (even if it was quite a distance away from the glaciers).

Image of the glacial coverage from the last ice age. Source: USGS (https://pubs.usgs.gov/gip/ice_age/ice_age.pdf)

Since European colonization of North America several hundred years ago, earthworms of European origin were introduced and have now become widespread in many areas, including those that had been previously worm-free since the end of the last ice age (such as the mid-western and northeastern U.S.). According to a 2024 study by Mathieu et al., at least 70 non-native earthworm species have colonized North America, which measures up to be 23% of the continents known earthworm species. Many of the most ‘familiar’ and commonly seen earthworm species that you may have in your landscapes may be introduced earthworms like the infamous nightcrawlers (Lumbricus terrestris), often referred to as common earthworms, which are actually European natives. These, along with around several other very competitive earthworm species have become globally widespread and some of them are even considered invasive species in many regions.

You might think, with the significant ecosystem services provided by these ecosystem engineers, is the introduction of non-native earthworm species to previously worm-free areas really that bad? The answer to this, is YES. Although the impacts of many of these non-native earthworms have been considered positive in agricultural (and home garden) situations, the impacts on natural ecosystems can result in significant ecological impacts. Additionally, not very much research has been conducted on long-term impacts of these organisms in different ecosystems. Though these effects will vary by species and ecological group, some earthworms have been associated with significant negative impacts to ecosystem processes. This has included the reduction of understory litter, impacted plant and fungal communities that are able to survive in these landscapes, has been associated with an increase in soil erosion, and had immeasurable impacts on many food webs. You can learn about the physical, chemical, and ecosystem impacts in greater detail from this publication by USDA’s Northern Forests Climate Hub.

Furthermore, some of these larger and more competitive non-native earthworm species have the potential to displace indigenous earthworm species which can often be more sensitive to soil disturbance than their introduced counterparts. The establishment of some of these non-native species around the globe can result in untold impacts on native earthworm species worldwide.  

This spread followed by the immense ecosystem impacts that have and continue to occur have been dubbed by some as “global worming”.

Common Questions

Can (/should) you introduce earthworms to your garden?

Whether you have compacted soils, low organic matter, or any other reasons, you may be tempted to consider trying to boost your local earthworm populations (in order to reap all the benefits associated with them).

First of all, you should never move around invasive species, nor introduce organisms that you do not know very much about to a new landscape. Not only is it illegal in many locations to intentionally introduce certain exotic species, it can also be irresponsible. I think we all know and understand why this is a bad idea, so I won’t go into too much detail.

Even if you did become an expert in earthworm identification, and could differentiate between native vs. non-native species (and know about the established earthworms in your landscape), it still may not be a great idea to introduce earthworms to a new location (especially if you reside in one of these historically worm-free areas). We know that introductions and releases of organisms to new sites can have a variety of negative consequences (even if they may be indigenous to the area or already well-established) [many of these were mentioned in my Blog Post on Releasing Lady Beetles and Mantids for pest control in home gardens].  

Even if you did manage to introduce them, they may not survive long-term nor stick around. That being said, good gardening practices may naturally attract earthworms to your gardens (without the need and potential negative impacts of introducing them yourself). So continue working on being an ecologically-responsible gardener, and enjoy the many benefits of this.

What about earthworms in my compost?

Because of earthworms’ ability to breakdown plant residues and convert them into valuable soil amendments rich in organic matter, composting using earthworms (vermicomposting) has become fairly widespread. These worm composting systems rely on earthworms such as the European red wigglers (Eisenia fetida), which are a common commercially available species. Although composting with earthworms is a well-established tool for gardeners, it is important to be a responsible vermicomposter to limit any unintended negative effects.

The contents of an indoor worm bin being assembled by gardeners at a workshop.
Photo: Abi Saeed

In areas where you do not know very much about your local earthworms and the ones that you are using in your compost (especially if you are located in previously worm-free regions), keep your worm bins contained, and do not introduce worms and cocoons in your gardens (especially if you live in proximity to natural areas). Strategies to accomplish this include creating a screen to separate your finished compost from your worms, inspecting it thoroughly for worms and cocoons and/or freezing your compost before you use it in your gardens.

Should we be working on managing these non-native earthworms?

As we know from countless examples and extensive previous experience, it is nearly impossible to eradicate established non-native (especially invasive) species. Due to the fact that many of these non-native earthworm species are widespread as a result of human transport, there is little that we can do to remove them from landscapes in which they currently thrive (especially without doing significant harm to other organisms that share those ecosystems). What we can do, however, is to limit the introduction and spread of non-native earthworm species through responsible gardening/farming (not moving around compost with earthworms or their cocoons to new sites), and recreation practices (avoiding the transport of leaves, mulch, and other plant debris into natural areas, and disposing of fishing bait appropriately).

More information on stopping the spread of invasive earthworms can be found through the Great Lakes Worm Watch campaign and land management considerations for earthworm management in areas that are worm-free as well as those with earthworm species are highlighted by the Northern Forests Climate Hub publication on non-native earthworms.

Resources:

Benefits and Biology of Earthworms (Penn State Extension)
https://extension.psu.edu/earthworms

Earthworms (Colorado Master Gardener)
https://cmg.extension.colostate.edu/Gardennotes/218.pdf

Great Lakes Worm Watch Campaign (University of Minnesota Duluth)
https://wormwatch.d.umn.edu/join-team/stop-spread

Non-Native Invasive Earthworms in the Midwest and Eastern United States (Northern Forests Climate Hub)
https://www.climatehubs.usda.gov/sites/default/files/Earthworms_CPrimer_05302024.pdf

Multiple invasion routes have led to the pervasive introduction of earthworms in North America (Mathieu et al., 2024)
https://www.nature.com/articles/s41559-023-02310-7

Earthworm Society of Britain
https://www.earthwormsoc.org.uk/

Global Distribution of Earthworm Diversity (Phillips et al., 2019)
https://www.science.org/doi/10.1126/science.aax4851

Landscape Malpractise Cases

Or “When to Fire Your Landscaper”

We have a guest writer for this week’s GP blog post, Teresa Watkins! She’s a professional landscaper and garden consultant in Florida (her bio is at the end of the column). As a professional she has seen “landscaper results” that will astound, scare, shock, or otherwise perturb you to no end. She has graciously shared photos and input for this blog post.


We hope this will be a series highlighting what to watch for when hiring a landscape company. Most of the following examples will have a “Caveat Emptor” feel to them. Just sayin’.


GP disclaimer: If you’re bothered by anything in this blog post please do not hold it against Ms. Watkins. Blame the editor who may have taken some liberties with the captions depending on how frustrated they felt at the time.


Let’s get started.

Case #1. Your landscaper charges you to edge dirt.

Don’t pay for “fluff work;” always inspect the bill and the job. Don’t assume the crew sent to do the job knows what to do. It’s up to you to know what needs to be done in your landscape. Please, always be polite when talking with the crews. They’re just doing their job.



Case #2. Your landscaper cut your plants so low to the ground they die.

Beware of landscaping crews wielding hedge shears and loppers, or even weed whackers. Yes, we’ve seen those used for a job like this. Make sure crews understand when to prune and how much to remove. This applies to cutting back or shearing shrubs into cupcakes, “Ding-dongs,” or other snack food shapes. Continuous shearing leads to early plant decline due to excess interior growth and shading. And it’s ugly.
Actually, if you have shrubs or hedges that have to be continually cut back perhaps it’s time to rethink that particular part of your landscape.



Case #3. Your landscaper continues to commit crepe murder.

Do we even have to discuss this anymore? Seriously. If the plant is too tall then remove it and plant something shorter.
https://nwdistrict.ifas.ufl.edu/hort/2018/01/10/correcting-crape-murder/


Case #4. Your landscaper plants a shade species in full sun, or vice versa.

OK, we can see what they were going for here – a color pop. But please read the plant tag! Always review the proposed plant list and diagram, and ask questions. Don’t trust the crew to know which plant goes where. They’re human and can make mistakes. If you’re concerned about what they’re doing tell them to stop and call the company owner or whomever you talked to and explain the situation. Remember you’re in charge, it’s your money, but always be polite.
…And those ferns look crowded for their mature size.
Well, they did follow the work order.


Case #5. Your landscaper insists on using herbicides for weed control along lawns, gardens and fence lines.

These photos show the accumulated effects of herbicide. There’s a three month’s difference between the photos; please note the continued plant death. Be sure crews are state certified pesticide applicators or have training in the application thereof (requirements vary by region). As the homeowner it is your responsibility to know what’s being sprayed. If you don’t want herbicides used then it’s up to you to specify that. If your requests are being ignored then it’s time to change companies. If the crew starts spraying against your wishes tell them to stop immediately. But be polite – they’re just doing their job.
Oops.

Our guest blogger, Teresa Watkins, is a landscape designer and owner of Sustainable Horticultural Environments. She creates unique, beautiful, and sustainable landscapes with her “gardening with soul” philosophy. Over 40,000 homeowners and professional landscapers have attended Teresa’s talks and programs. Teresa hosts Florida’s most popular syndicated radio garden show “Better Lawns and Gardens” Saturday mornings on WFLA-Orlando, iHeart, Spotify, Audioboom, iTunes, and on podcast. She enjoys traveling and leading garden tours, checking off incredible national and world gardens on her ‘bucket’ (pronounced ‘bouquet’) list. www.she-consulting.com