Hort couture or hubris? The growing trend of genetically engineered novelty plants

A few months ago I wrote about the newly released Purple Tomato, one of the first direct-to-consumer genetically engineered plants made available to the general public. (I’m happy to report that my Purple Tomato seedlings are growing along quite well.) Shortly after I wrote that article, I learned about another new genetically engineered plant being released to home gardeners, this time a bioluminescent petunia. So, of course you know I just had to have some.

The Firefly Petunia was released recently from Light Bio, a company based in Idaho.  The company states that they grew out 50,000 plants for initial sale, but have worked with third-party growers to grow out additional plants from cuttings due to high demand for the plants.

The petunia itself is pretty nondescript. It is a small-flowered, white variety that wouldn’t get a second glance at a garden center. But the company introduced a set of genes from a bioluminescent mushroom called Neonothopanus nambi  that make the faster growing parts of the plants (mainly flowers, but also other growing points) glow. The glowing is caused by a reaction between enzymes and a class of chemicals called, funnily enough, luciferins. And this is bioluminescence – it glows all the time in the dark. It isn’t like a “glow in the dark” where they have to charge up with a light source and only glow for so long.

How a mushroom gets its glow
Neonothopanus nambi daytime look to night time look Source: Science News

Just like the petunia, the fungus is pretty nondescript during the daytime, but glows brightly once darkness descends. I’ve seen glowing fungus once in my life. As a kid I once saw what is called Foxfire, a glowing fungus on some decaying logs. It is pretty cool seeing something glowing so eerily in nature. Now, I have that same glow in my garden.

Back to the plants. The plants are a bit of investment, ringing in at $29 per plant plus shipping, but there are some price breaks at higher quantities if you order several or put together a group order. As a startup, I suppose the company is banking on the novelty of the plant to demand such a high price to cover costs. According to several sources, these white petunias are just the start. They’re working on roses, houseplants and more.

But why glowing petunias?

Before I placed my order, I had to take a step back and think about why. Why a glowing petunia? With the tomato there is at least the case of increased health properties with added anthocyanins. But what is a value of a glowing petunia other than a novelty? Is there a purpose? Or is it just hubris? And why are there genetically engineered plants on the market all of a sudden?

While the petunias don’t have a culinary or health value, the value that they bring is one of acceptance and familiarity. For decades now, well organized and funded campaigns have spread fear of genetic engineering. Seed companies embraced “Non-GMO” as a marketing scare tactic to drive up sales due to a fake boogie man. And even bottled water and salt are labeled as “Non-GMO”. But it seems that the tide of public opinion seems like it might be turning.

Seeing the excitement around both the Purple Tomato and this bioluminescent petunia seems to show a growing interest, or at least a waning of distrust, in genetically engineered plants. And It think that is one of the benefits, or maybe the causes, of seeing genetically engineered plants on the market. Researchers have found that the online conversation about genetically engineered organisms seems to be shifting – from less polarized to increasingly favorable.

While there are sill some hiccups and some ethical and environmental issues, most scientists see genetic engineering as the most important tool in addressing issues such as endemic plant diseases affecting staple crops and developing plants that can withstand warmer and drier conditions as the climate changes. In order for us to be able to fully use these tools, the conversation needs to continue to shift to a more favorable position.

Starting off with tomatoes, petunias, and other flowers is also a choice of ease. Growing plants that don’t have native counterparts where there could be unintentional spread of genes in the wild reduces some of the regulatory hurdles plants face in the United States. And while the purple genes introduced into tomatoes could spread to plants in the food supply, the safety risk is minimal. It would be much harder to get approval for, say, a genetically engineered sunflower or coneflower where there are wild-growing natives into which the glowing genes could inadvertently spread.

Why are genetically engineered plants popping up all of a sudden?

Probably one of the reasons we are seeing so many new genetic engineering projects now is that it is so much easier. With the discovery of CRISPR-Cas9 technology, it is much easier for scientists to transform plants with DNA insertions or extractions. This technology has revolutionized the world of genetics and genetic engineering not only in the plant world, but also in the areas of human health and more.

Before CRISPR, there were a few methods of introducing DNA into organisms. The most common one for plants was probably using a plasmid from the bacterium Agrobacterium tumefasciens. This is the cause of crown gall and it works by inserting its own ring of DNA, called a plasmid, into the DNA of the plant. The plant then produces proteins based on the virulent DNA and also replicates the DNA. One of the common method was bombardment, putting the DNA on tiny microscopic beads, usually gold, and shooting them into the tissue. Tobacco mosaic virus was also used for plant genetic transformations, especially in related plants such as tobacco, tomato, and…..petunia. Most of the work I did in undergrad was with the commonly used with model plant Arabidopsis thaliana (mouse-ear cress).

The transformation, or success, rates for these methods was relatively low compared to CRISPR. Plus, where the DNA ended up was random. There was no control over where the new snippets of DNA ended up, or what genes they would disrupt, or knock-out, in the process. I did quite a bit of research as an undergrad on figuring out just what genes were knocked out in certain transformations and what that changed in their physiology or response to stimuli (our research focus was gravitropism and response to red light).

CRISPR has taken away the guessing game from genetic transformations. Scientists can now target exactly where they want genes to be inserted, or in some cases “knocked out” or interrupted so they are not expressed. For example, Arctic Apples were developed by knocking out the gene in apples that makes polyphenol oxidase, the enzyme that causes them to turn brown after cutting. This has created a technology that has the potential to substantially reduce food waste in crops that have similar reactions as well, such as potato.

So I think the trend of genetically engineered plants for consumers will continue to grow. Evolving from novelty plants to plants that serve a higher purposes, such as nutritional value enhancements, climate change resistance, and more. It will take us a while to get there, but as the technology advances so does, it seems, public opinion. Until then, I’ll just enjoy my glowing petunias and purple tomatoes.

Additional Sources

https://www.scientificamerican.com/article/this-genetically-engineered-petunia-glows-in-the-dark-and-could-be-yours-for-29/

https://www.science.org/content/article/mushrooms-give-plants-green-light-glow

https://www.fastcompany.com/91073850/glow-in-the-dark-petunias-are-just-the-beginning

Trials and Triumphs: All-America Selections Judging and 2024 Winners

I’ve written before about my time as a trial judge for the All-America Selections program, which I did during my seven years with Nebraska Extension. I happened upon the opportunity to be a judge by accident, but really came to relish my time and the work that the organization does.

You see, All-America Selections started in 1932 as a way to actually certify the claims that newly-introduced plants were actually better than ones already available. Previously it was sort of the wild-west of claims made by everyone who had a garden catalog or wrote a garden publication. There was no way to level the playing field and certify these claims until W. Ray Hastings, the president of the Southern Seedsman Association, established the All-America Selections trial program. As a non-profit and now part of the National Garden Bureau, the organization and its volunteer judges can serve as impartial arbiters of the superiority of newly-introduced plants.

This emblem on a seed packet or plant label indicates that the plant has gone through rigorous testing and performs well in gardens across the US (and beyond).

This is especially important in this day and age of spurious claims and piles of misinformation on the web. The organization uses a research-based approach in determining high-quality plants with replicated trials all across the country. Plants have to perform well in all regions of the country to be a winner. Sometimes if a plant does well in one area but not others, it will be considered a regional winner.

Ninety-one years later the organization still serves as the gold standard for performance in home garden plants. Judges have a track record of picking plants that are favored even decades after they are introduced. The ‘Celebrity’ tomato, winner from the class of 1984,  has probably been grown by almost everyone who grows tomatoes and can be found in almost every garden catalog or seed rack. ‘Bright Lights’ Swiss Chard, class of 1996, is also a go-to favorite for almost anyone who grows chard. And while many plant cultivars come and go with trends and company closures, there are still seven cultivars from the first class in 1933 still available for home gardeners to purchase through retailers: Tomato ‘Pritchard’, Spinach ‘Giant Nobel’, Pansy ‘ Dwarf Swiss Giants’, Nasturtium ‘Golden Gleam’, Carrot ‘Imperator’, Canterbury Tale ‘Annual Mixed’, and Cantaloupe ‘Honey Rock’. You can check out their profiles on the AAS website to see where to buy them.

2024 Winners

So far there have been 10 winners announced for the 2024 garden season. It unlikely that any more will be introduced at this point, but they often aren’t announced until they are ready to go to market so there’s always a chance. I served as a judge for the edible crops (vegetables, fruits, herbs) for both in-ground and container trials so I’ll start with the edible winners. Then I’ll also share info on the ornamental winners.  You can always find more information, including which seed and plant suppliers/retailers carry the plants, at the AAS website.

Broccoli Purple Magic F1

Broccoli Purple Magic - AAS Vegetable Winner

A striking purple broccoli with tight growth habit. Judges noted it for its great broccoli flavor that was sweeter and more tender than the green broccolis to which it was compared. It was also noted for its heat and stress tolerance.

Broccoli Skytree F1

Broccoli Skytree All-America Selections Winner

This broccoli’s long stalks set it apart. They make the compact heads easy to harvest. It is also noted that the stalks themselves are tender, sweet, and flavorful so they should be eaten as well. It is noted as being uniform and early maturing. Skytree was a regional winner in the West and Northwest. Container suitable.

Pepper Red Impact F1

All America Selections Winner Red Impact Pepper

This is a Lamuyo pepper which is a Spanish pepper noted for exceptional sweetness. It is sweeter than your standard bell pepper. The fruits are huge – nearly 8” long and double the size of standard bell peppers. We noted that they were delicious and sweet, even when green.

Celosia Burning Embers

All America Selections Winner Celoisda Burning Embers

A beautiful and long-lasting celosia in the garden. It is noted for its bronze leaves with pink veins and bright flowers. It is well-branched, heat and drought tolerant, and long-lasting in the garden. It lasted well past other types trialed. Container suitable.

Geranium Big EEZE Pink Batik

All America Selections Winner Geranium Big EZEE Pink

This geranium was noted for its long-lasting flowers and large flower heads. The prolific and large flower heads have a unique pink and white mosaic design. Judges also noted that it was very sun and heat tolerant. Container suitable.

Impatiens Interspecific Solarscape ® Pink Jewel F1

AAS Winner Impatiens-Solarscape XL Pink Jewel

Noted for the bright pink flowers with an opalescent sheen, these flowers lasted well through the season. These plants are sun tolerant and also noted as being resistant to impatient downy mildew, which has basically made it almost impossible to grow (or buy) impatiens lately. Container suitable.

Marigold Siam Gold F1

Marigold Siam Gold - National AAS Winner

This large-flowered marigold was noted for season-long performance. It was also noted that the plants didn’t need staking, even though they were tall and had large flowers making them top-heavy. Container suitable.

Petchoa Enviva™ Pink

All America Selection Winner Petchoa Enviva Pink

You might be asking yourself the same question I did – “what the hell is a petchoa?” And the answer is great – it is a hybrid cross between an Petunia and a Calibrachoa, often called Million bells. The result is a beautiful, mounding plant that is covered with large, beautiful pink iridescent flowers with yellow throats. The judges noted that plants performed well all summer, even in extreme conditions. Container suitable.

Petunia Sure Shot ™ White

The judges noted that this petunia performed like a powerhouse all season long, including extreme summer heat and weather. Most notably, the flowers kept their snow-white flowers all season, whereas many white flowers fade or get blemished quickly after blooming. Regional winner from the West, Northwest, and Great Lakes regions. Container suitable.

Verbena Sweetheart Kisses

Verbena Sweetheart Kisses

This blend of verbena has pinks, roses, reds, and whites that were super attractive to bees and other pollinators. Judges also noted the fine foliage, which isn’t like standard verbena foliage. The plants performed well all season long, even in heat and drought. Container suitable.

Petchoa – bringing together the best of the Petunia and Calibrachoa worlds

Wrapping it up

Finding that AAS seal is a great way to assure that you’re buying high performing plants for your garden. I truly did enjoy my time as a judge, even though my trials were often “if it lives through this, it definitely deserves an award” type of gardening. Now that I’ve left Extension, I’ll no longer serve as an official judge, but I still plan to volunteer to help the Extension office and serve as an “ambassador” for the AAS program. I’m glad they’ll let me stick around!

Unpacking a Peck of Purple Genetically Engineered Tomatoes

Excitement spread across social media recently with the announcement that a genetically engineered tomato, creatively named “The Purple Tomato” is now available for home gardeners. Gardeners, plant scientists, and others rejoiced at the news that a purple tomato engineered with genes from a snapdragon to boost the plant pigment anthocyanin is now available for home gardeners to purchase. But why were people so excited? And what does this mean?

The Purple Tomato: What is it and why is it exciting and important?

The Purple Tomato was developed by a company called Norfolk Healthy Produce. The company was founded by Professor Cathie Martin (and other scientists) who is a professor at the University of East Anglia and a group leader at the John Innes Centre in the UK. On February 6, 2024 they announced that seeds were available to home gardeners in the US after clearing regulatory approval hurdles by the USDA, EPA, and FDA to assure that it is safe for human consumption, for growth in US without safety containment measures, and that it does meet its claims of added nutrients. Read more about the US regulatory process here.

For all the tomato aficionados out there, The Purple Tomato is an indeterminate cherry tomato. Indeterminate means that the plant doesn’t stop growing as long as it is healthy and will produce a “vine” that needs to be staked or trellised off the ground. Production of fruits continues throughout the season starting at the bottom of the plant and going up as long as it is healthy.  Of course, it is a cherry tomato so you’ll have hundreds or thousands of tiny fruits to pick through the season. Some gardeners love growing cherry tomatoes. Others hate it for that fact. So you win some, you lose some.

Read more on indeterminate vs. determinate here.

The tomato contains two genes from snapdragon flowers that boost anthocyanin production in the tomatoes. Anthocyanins are the plant pigments responsible for blue and blue-purple colors in plants. And they are shared across all plants with these blue and blue-purple colors, so the addition of purple pigments from a flower isn’t too out of the ordinary since tomatoes already contain similar pigments. (The reddish violet/crimson color of plants in the Amaranthaceae family (beets, amaranth, chard) are from betalin pigments, not anthocyanins, FYI.) Most plant pigments actually have the added bonus of also being highly beneficial for human health as most of them are antioxidants and have other health benefits. The incorporation of anthocyanins boost the nutrient quality of tomato since anthocyanins are considered strong antioxidants. Studies also implicate anthocyanins in reducing blood pressure and heart disease, preventing neurological disease, and slowing cancer growth due to the reduction of free radicals that can damage DNA.

Source: Overview of Plant Pigments, Springer

Now, anthocyanins in tomatoes are not new. Many hybrid and heirloom varieties of tomatoes contain anthocyanins. The tomatoes that already contain anthocyanins are the tomatoes that are often considered “purple” or “black” by seed companies and home gardeners. Like ‘Cherokee Purple’, ‘Black Beauty’, and ‘Black Krim’. However, the anthocyanins in these tomatoes are generally found in low quantities as they are only found in the skin and or the flesh just under the skin. What makes “The Purple Tomato” novel is that it is the only tomato that has the anthocyanin pigment in both the skin and throughout the tomato. Seeing pictures of the tomato, the vibrant purple color goes through the entire tomato and is striking. (It also doesn’t hurt that purple is my favorite color). Due to this purple color throughout the tomato, the fruits have a much higher concentration of anthocyanins than existing cultivars.

Another thing that excites me about The Purple Tomato is that the company claims that is an inbred/open pollinated variety. Meaning that home gardeners can save the seeds from year to year and the anthocyanin traits will continue to be present. This also signals a departure from normal genetically engineered seeds where the traits aren’t as persistent and seed saving isn’t allowed. The company does have some terms and conditions about not selling seeds (from the ones you buy or likely from any you save) and not using them to breed other varieties. But gardeners are free to save seeds and share fruits, plants, and seeds with your local community.

“GMOs” and home gardening

Despite what many people may think, until the release of this tomato there really weren’t any genetically engineered plants available to home gardeners. This marks the first time that a plant has received approval from the US government agencies that control the release of genetically engineered plant for sales directly to home gardeners. Most of the genetically engineered plants have been developed for and are available only to commodity crop (corn, soy, cotton, etc.) and select horticultural crop (papaya, some select squashes, and now Arctic apple) farmers. There’s a highly regulated process and contract procedure for farmers to obtain the seeds or plants that just isn’t practical or cost-effective for the plant developers to market to or make seeds for home gardeners.

Source: UC Davis Biotechnology Program

We’ve written several times about how, until now, there really hasn’t been genetically engineered seeds available to home gardeners, despite what some seed companies would have you believe (here and here). There has unfortunately been a lot of confusion for home gardeners thanks to misguided and/or deceptive marketing practices by certain (heirloom) seed companies that labeled their “Non-GMO certified” seeds and preached about the dangers of genetic engineering to sell more of their seeds even though there have not (until now) been any “GMO” seeds available for companies to even sell to home gardeners. Unfortunately that deceptive marketing created enough fear and fervor that most seed companies had to start labeling their seeds “Non-GMO” just to preserve their sales and cut down on harassment from folks on social media trying to “call them out” for selling GMO seeds.

Not until the release of “The Purple Tomato” has there been a home garden seed that could be labeled “GMO” and warrant companies needing to label something as non-GMO. But still it is only one plant, so is it really necessary? Or is it just a marketing tactic?

Purple Tomato Reception

In cruising through the comment section on articles discussing the new tomato, I’ve been pleasantly surprised to see the positive response that it is receiving from the public. There are lots of comments excited about the prospect of a nutrient-dense genetically engineered crop, lots of excitement about buying the seed, and even excitement about the super purple color of the tomato. The few negative comments about GMOs being “bad” have gotten a lot of pushback. I don’t think this would have happened 5 or 10 years ago.

Of course, some of the pushback is a little misguided. Statements like “all plants are GMO” show a similar lack of understanding of what is actually happening, even though it is offered in good faith. Yes, humanity has guided and shaped the genetics of all of the plants we eat over the centuries and many plants have therefore been “genetically modified” by humans. But genetic engineering is a more rigorous and scientific process. This is also one of the reasons why scientists and government agencies prefer the term “genetically engineered” or “bioengineered” to GMO or genetically modified to clear up confusion.

It does seem like the tide has shifted on public acceptance of genetic engineering where until recently many people viewed the technology with skepticism and fear, thanks mainly to misunderstanding and marketing.

Much of the fear and distrust of genetically engineered plants have been around the addition of genes to make crops resistant to certain herbicides, to produce natural immunity to insects, and other traits to increase yields. Many have wrongly assumed or claimed that this has resulted in increased application of herbicides. While application of some herbicides like glyphosate has increased, it has been at the reduction of much more dangerous herbicides. These crops have often been developed and controlled by large chemical companies that, perhaps not totally incorrectly, the general public distrusts. Plus, unintended consequences like herbicide resistant weeds have caused issues.

But the new Purple Tomato goes beyond this and I think is applauded for many reasons. One – it was made solely to boost nutrition. While there have been previous (mostly unsuccessful) efforts to do this in crops (see the story of Golden Rice), this is really the first time it has been aimed at home gardeners. Two – it isn’t one of those “big scary corporations” doing it. It is a company started by academics to promote plant science and health. Three – while the plants are patented, there aren’t strict and secretive agreements against seed saving and sharing. And four – the express purpose of the plant is to increase the healthy qualities of the plant.

In conclusion

It seems like many people are excited about this new genetically engineered tomato on the market. I know that I am. It seems like the public at large is accepting and excited by this new health-boosted tomato and the technology used to make it.

I know I’ve ordered my seeds, and many others have as well. The seeds aren’t cheap, $20 for 10, but the process to make them isn’t cheap either. I’m looking forward to trying them out in my own garden.

Disclaimer: No payment or reward was received for this article promoting the Purple Tomato and I have no affiliation with the company. Norfolk Healthy Produce didn’t even know it was being written. They probably don’t even know who the Garden Professors are and they definitely don’t know who I am. That being said, if they want to reach out with some free seeds or swag, I wouldn’t be mad at them.

Testing, testing, 1-2-3: Trialing new plants for the home garden

How do you know that plants will do well in your garden?  Do you research the types of plants for your region, study different cultivars, and select only things that have been proven to do well for your conditions?  Or do you buy what catches your eye at the garden center, plant it, and then see what happens?  I used to joke that my home garden was a horticulture experiment station, since I’d try all kinds of random plants or techniques and see what works for me.  Now, I get to do that as a fun part of my job through the All-America Selections (AAS) program. You’ve likely seen the AAS symbol on plants or seed packets at the garden center or in catalogs.  Heck, you may even have them in your garden (and not know it).  I compare it to the “Good Housekeeping Seal of Approval” that you used to see on appliances, cleaners, etc. The AAS program is a non-profit started in the 1930’s with the goal of evaluating new plants so that home gardeners can purchase high quality seeds and plants and to assist the horticulture industry in marketing innovations from their breeding programs.  You can read more about AAS and its history here.

A few weeks ago I traveled to Chicago for the All-America Selections (AAS) Annual Summit to receive their Judge Ambassador Award.  I had signed up a few years ago to be a trial site for edible crops for AAS.  The following year I talked my colleague Scott into signing up as a judge for their ornamental trials.  The fun thing about the program is that we get to grow all kinds of vegetables, fruits, and flowers that aren’t even on the market yet.  We get to see how well they grow compared to similar plants and rate them on a number of factors including growth habit, disease resistance, and performance plus flavor (for edible crops) or flower color/form (for ornamentals).  It can be hard work, but it is rewarding to help identify true plant innovations and to see your favorites be announced as winners.

How the testing works
While the AAS Trials may not have the rigor of academic crop research, I do appreciate the procedures in place that provide objective and high standard results.

Breeders, developers, and horticultural companies submit their new plants that are planned for future introduction to the board of AAS for consideration in the trialing program.  During the application process, novel traits of the plants are identified to ensure that the plant offers something new and exciting – these are the traits that judges will observe and score.  The board reviews the application to determine if it fits within the program rules.

Planting the vegetable/fruit trials.

One great thing about the program is that trial judges are professional horticulturalists from universities, seed companies, botanical gardens, etc. – they’re people who know how to grow things and know what quality plants look and act like.  There are trial sites all around the country, providing for replication and generalizeable results for most regions of the country. The conditions plants are grown in also vary by location.  My trial is at a farm where management is minimal.  When we were at the summit we visited the trial gardens at Ball Horticulture which looked much more maintained and pampered compared to mine.  This gives data on a variety of maintenance levels as you’ll find in home gardens – some gardeners are very conscientious about maintaining their plants and others have a more laissez faire approach.  In order to win as a full national AAS winner, the plants have to perform well across the country in all these different situations.  Sometimes those that perform well in a few regions but not the others will be designated as regional winners.

Second, the tests are blind.  This means that we do not know what the exact plant is, who the breeder or seed company is, or any other info other than what type of plant it is.  To the judge, each entry is just a number.  It could be from a seed company you love (or hate), your best friend, the breeder who was your advisor from grad school, etc.  This makes the results fair and reduces the chance for bias toward or against a plant based on its origins.  The ratings are just based on the plant.

Another part of the trial is comparison.  It is one thing to grow a tomato plant and say “yep, that’s a good tomato.”  Its another to grow a tomato and compare it to similar cultivars to say “yep, that’s a good tomato….but it is better than what’s already available on the market.”  The goal of the program is to show how new plants have merit over older plants.  We only need so many new tomatoes (and let’s face it, there are lots of new tomatoes – we test WAY too many in the AAS process for my liking).  The board of AAS judges reads the entry info from the new cultivar being tested and selects plants (usually two) to compare it against.  If the trial is a yellow cherry tomato, it will be grown and tested alongside other yellow cherry tomatoes.  The scoring is based on whether its performance or taste is as good as or better than the comparisons.  If most judges don’t rank it as “better” then it has no chance of winning.

Confidentiality and Proprietary Plants

The fact that the testing is blind, paired with the fact that results of “failed” tests are not released, lends itself to confidentiality.  Another important factor about the testing is the proprietary nature of the tests and test sites.  These are new plants that haven’t been introduced to the market (except for the case of perennial trials) and are usually for proprietary or patented plants.  Test sites should have some sort of control over who enters them and signs prohibiting the collection of seeds, pollen, or cuttings are placed at the site.  Believe it or not, the world of plant introductions can be dog-eat-dog and cutthroat.

So what if it doesn’t win?

One of the cool things about the test is seeing the announcements of the winners early the following year.  You see the list of plants and think back to what you grew the previous season.  If often find myself thinking “oh yeah, I remember that plant, it did really well” and sometimes even “how did that win, it did horrible for me.”  This is a good reminder that we can’t base generalized garden recommendations on anecdotal evidence.  What did well for me may not work for someone else and vice versa.  All the results from the test sites go together to provide a general view of the plant performance.  It will do well for some and not others.

So if most of the judges rank the crop as not performing, looking, or tasting as good as the comparisons the plant doesn’t win.  And that’s it.  Due to the confidential nature of the testing you won’t know that it failed the test.  Even I won’t know that it failed the test. It will likely go on to market without the AAS seal where it will face an even tougher test – the test of consumer demand.  Of course, many people may grow it and be successful, and some may grow it without success.

What are the AAS Winners and how do I find them?

There’s a list of plants announced each year through the AAS website and social media channels.  You can find a list, in reverse order of winning (meaning most recent first) on the AAS Website.  The site also has a searchable database if you’re looking for a specific plant.  Since these plants are owned by lots of different seed companies and breeders, there’s also a retailer listing on the site.  The AAS program also supports a number of Display Gardens across the country, including botanical gardens, university gardens, and others where the public can see the most recent winners growing.  Here in Omaha we maintain a display garden for the ornamental plants at our county fairgrounds.  We also have our on-campus garden which is used for our TV show Backyard Farmer (the longest running educational TV program in the country, BTW) which serves as a display garden for both ornamental and edible crops.

I recently shared the AAS Testing Program with the local news here in Omaha. Check it out:

 

Some of my favorite recent AAS Winners
Pak Choi Asian Delight AAS WinnerAsian Delight Pak Choi – this was planted in May and didn’t bolt.  We were still harvesting it in October.

 

 

 

Pepper Just Sweet - 2019 AAS Edible-Vegetable Winner

Pepper Just Sweet – these plants were big and healthy even when everything else was struggling.  The peppers were delicious.

 

 

 

Potato Clancy - 2019 AAS Edible-Vegetable Winner - The first potato grown from seed!

Potato Clancy – potatoes….from seed!  Just fun!

 

 

 

 

Pepper habanero Roulette - 2018 AAS Edible - Vegetable WinnerPepper Habanero Roulette – All of the fruity sweet, none of the heat.  A fun heatless habanero.

 

 

 

Dianthus Interspecific Supra Pink F1 - 2017 AAS National Winner - This compact, bushy plant blooms prolifically with novel mottled pink flowers sporting frilly petal edges that hold up even in summer heat and drought.Dianthus Intraspecific Supra Pink– A reblooming, prolific Dianthus with interesting ruffled flowers.

 

 

 

Eggplant Patio Baby – container sized eggplant with mini fruits perfect for cooking or roasting whole.

 

 

 

Ornamental Pepper Black Pearl 2006 - AAS Flower Winner - Black Pearl is a handsome plant with black foliage.Ornamental Pepper Black Pearl – Cute purple flowers lead to these shiny pepper pearls.  Love the black leaves, too.

Native vs. nonnative – can’t we all just get along?

Probably the most contentious gardening topic I deal with online is the native vs. nonnative plant debate. This, unfortunately, is a debate that is more based in emotion than science, and I don’t intend to stir that pot again. We’ve discussed it on this blog before (you can find a list of them here), and I’ve published both a literature review and a fact sheet on the science relevant to tree and shrub selection. What I want to do in this post is compare two research papers, both in peer-reviewed journals, that come up with dramatically different conclusions.

The first has been getting a lot of publicity on the web and in social media. It was published just two days ago, but because of widespread PR prior to release it appears over 37,000 times in a Google search. The title “Nonnative plants reduce population growth of an insectivorous bird” – and much of the prerelease publicity about the article spells doom and gloom. It’s a message that gets traction.

The second was published a year earlier and is entitled “Native birds exploit leaf-mining moth larvae using a new North American host, non-native Lonicera maackii.” It appears 194 times in a Google search, even though it’s been available for over a year.

Amur honeysuckle (Lonicera maackii)

The reason I’m singling out these two articles is they have completely different messages – and one of them is not being heard as loudly as the other. The first focuses on a single bird species, the Carolina chickadee (Poecile carolinensis) and its diet in urban landscapes. Their conclusion: “…properties landscaped with nonnative plants function as populations sinks for insectivorous birds.” Thus, any gardener who happens to use introduced ornamental plants in their landscape is made to feel guilty for starving their insect-eating birds. (As an aside with my manuscript reviewer hat on – this statement has no business being in an abstract as it overextrapolates the research on one species to include ALL insectivorous birds.)

Carolina chickadee (Poecile carolinensis)

Black-capped chickadee (Poecile atricapillus)

The second article has a different focus. It reports the feeding of black-capped chickadees (Poecile atricapillus) on the larvae of a leaf-mining moth (Phyllonorycter emberizaepenella). While leaf miners are common food items for chickadees, the point of this article was to document the host of the leaf-miner – a nonnative and particularly invasive species of honeysuckle (Lonicera maackii).

Honeysuckle leaf miner (Phyllonorycter emberizaepenella)

Honeysuckle leaf miner damage

Chickadees as a group are particularly adept at finding and consuming leaf miners, whose tunnels normally protect them from insectivorous birds. Chickadees move along branches,“examining leaves both above and below them; the chickadees sometimes scanned by hanging upside-down.” This makes it easier to find and extract leaf-miners, as the underside of the leaf is easier to tear open than the surface. And in fact this behavior is reflected among other species of chickadee and leaf-miner: “Similarly, in 15 years of study, Connor et al. (1999) never observed species other than Carolina chickadees (Poecile carolinensis) feeding on the larvae of the gracillarid Cameraria hamadryadella [oak leaf miner].” While these are not the same species of leaf miner studied in this paper, the point is that chickadees eat leaf-mining insects. And leaf-miners can obviously adapt to new food sources, including introduced plants. This is basic ecological science.

Oak leaf miner damage

Oak leaf miner (Cameraria hamadryadella)

Neither Craves’s article (the second of these two articles) nor that by Connor et al. (cited within Craves’s article) are cited by Narango et al. (2018 – the first article), even though both are certainly pertinent to the topic. But they don’t fit the narrative – which is that introduced plants are not good food sources for the insects that chickadees eat. So they are left out of the discussion, which by default is now biased – not objective. Not science-based.

And I don’t have a good answer to the obvious question – which is why we continue to demonize noninvasive, introduced plants in the absence of a robust body of evidence supporting that view.

Hello Again, and a fun article that was called to my attention.

By Jeff Gillman (posted by Linda C-S, who has taken liberties with using photos from UNC Charlotte gardens that have nothing to do with Jeff’s post.)

Living arch at UNC Charlotte gardens

It has been almost two years since I have had the chance to post anything as a Garden Professor. Since then I’ve taken a job as the Director of UNC Charlotte Botanical Gardens and there are all kinds of things I’d like to share with you, and perhaps sometime over the next few weeks and months I will, but for now what is probably most pertinent is that I absolutely love my job. I am still doing some work on garden myths, but what I’m finding more entertaining is investigating the histories of different plants and their interactions with humans. In fact, in about a month or so, my friend Cindy Proctor and I will be releasing a podcast titled The Plants We Eat that investigates the interesting history, culture and biology of the various plants we use for food. We’ve already recorded shows on strawberries, grapes and mad honey, and we’ll be doing shows on apples, figs, and a few others before we release it – we want to have a decent backlog of shows so that we can maintain a pace of one podcast a week.

UNC Charlotte gardens

But enough about me! The current Gardens Professors called my attention to a recent article titled “The effect of ad hominem attacks on the evaluation of claims promoted by scientists”, and I found it informative to say the least. This article provides instructions on how to stop people from trusting a particular study.

No, seriously. If you wanted to you could actually rewrite this as a short manual on how to make people question the results of any scientific study.

And if you did I think it would look kind of like this:

(Short Disclaimer – I’m pretty sure that the authors of the above article never intended it to be taken in the way I’m presenting it. I’m posting this purely as satire.)

So, someone has published a scientific article that you disagree with. Hey, we’ve all been there. Scientific evidence that contradicts your beliefs/works/preconceived notions sucks, but it isn’t the end of the world. There are things you can do.

You might consider conducting your own well-designed experiments that would call into question some of the claims of the offending work. Once upon a time this was been the standard way to address this kind of problem, but this could take months or even years to accomplish. And the truth of the matter is that your experiment might not even say what you want it to and even if it does, with attention spans the way they are, nobody will even remember what you’re even talking about when your paper comes out.

Which is to say, there are better, faster ways to take care of inconvenient research, and that’s where this convenient manual comes into play.

Rain gardens at UNC Charlotte

First, realize that attacking the research itself isn’t a sure thing. Sure, it’s the right thing to do, but morals be damned, attacking the research itself can be waaaayyy too technical. People won’t understand what you’re talking about, so forget about it.

Attacking researchers personally by making nasty comments about where they graduated from college or that they do sloppy research would seem like winner, that kind of attack just doesn’t cut it today. Maybe it’s the political climate, but, to their credit, people just aren’t responding to non-specific personal attacks the way they once did.

So you’ve got to be smart and hit them where it hurts. You could say that data was fabricated in the paper that you want to discredit, but this could be problematic if it isn’t true. Not to worry. All you really need to do is find an instance where the researcher did do something wrong. In fact, it’s possible that some past misconduct could be even more effective at discrediting a paper than misconduct on the paper in question itself.

The gold standard, however, is conflict of interest. By establishing that the researcher who has caused you grief has some sort of conflict of interest you can cause people to question the results of research just about as effectively as if some sort of misconduct had taken place, and conflicts of interest are much easier to find! You could blame a company, a person, or even a University. Shoot, want to show that a study, which demonstrates that an herbicide is effective at controlling a weed, isn’t true? All you need to do is show that the company which makes the herbicide gave a few hundred dollars to an athletic program at the school, or show that one of the student workers in the lab has a second cousin employed by the company. It’s all good.

Water hyacinth

And so there you have it. The fast, easy way to discredit someone. And remember, just implying things can be as effective as having facts. No need to lie! Good Luck, and remember The Truth is What You Make It!

BOTANIST IN THE KITCHEN

(Revisiting Ray’s Recommendations)

https://www.botany.one/tag/botanist-in-the-kitchen/
Image by Keith Weller, USDA ARS

It’s been awhile since I wrote about, or recommended a blog I like which I often use as a source of something to share to The Garden Professors Facebook Page, so I thought I’d revisit the topic this month.

Botanist in the Kitchen was launched in the fall of 2012 by Dr. Jeanne Osnas and Dr. Katherine Angela Preston, evolutionary biologists who also love to cook and were often asked by friends and family to discuss the details about plants during dinner parties.

Add a friend, chef Michelle Fuerst, to provide recipes and there you have it.

Our goal is three-fold: to share the fascinating biology of our food plants, to teach biology using edible, familiar examples, and to suggest delicious ways to bring the plants and their stories to your table. To judge by the questions we are often asked at dinner parties (“What is an artichoke?” “Why is okra slimy?”), some curious eaters genuinely want to know which plant part they are eating and how its identity affects the characteristics of the food.

Dr. Nigel Chaffey, an editor of the Annals of Botany journal and their blog, Botany One coined a cool word (which I’ve stolen) for their mix of plant science and cookery … Phyto-Food-Phylogeny while introducing them to a wider audience …

Plants and food? Tell me more! Well, espousing the view that ‘a person can learn a lot about plants through the everyday acts of slicing and eating them’, The Botanist in the Kitchen ‘is devoted to exploring food plants in all their beautiful detail as plants – as living organisms with their own evolutionary history and ecological interactions’.

I first learned about the blog back in 2015 from an article in Business Insider, linking to their post on the various foods we grow, that were bred from one species of plant …

Brassica oleracea

Six vegetables you can find in any grocery store and which most people eat on a regular basis are actually all from this one plant. Over the last few thousand years, farmers have bred Brassica Oleracea into six “cultivars” that eventually became many of the vegetables we eat …

From the blog post

Some species have undergone the domestication process multiple times, and with some of these species, each domestication effort has focused on amplifying different structures of the plant, producing a cornucopia of extraordinarily different vegetables or fruits from the same wild progenitor. Such is the case with Brassica oleracea. The wild plant is a weedy little herb that prefers to grow on limestone outcroppings all around the coastal Mediterranean region.

So if you enjoy learning about plants we eat, and trying various recipes with them, be sure to follow the Botanist in the Kitchen via email.

Previous posts here on the other blogs I’ve recommended:

Scientific Beekeeping 

Frankenfood Facts

James Kennedy on Chemistry

Ask an Entomologist

Nature’s Poisons

 

What’s in YOUR honey? It may not be the nectar you expected.

This month’s National Geographic has a brief article from an ongoing study of the DNA profiles of urban honey. While we can all observe honeybees visiting flowers in our own gardens, until recently we could only assume what nectar they were collecting for honey production. This tantalizing snippet completely blew me away.

Honey collection

The study, undertaken by an entomologist who founded the Urban Beekeeping Laboratory and Bee Sanctuary, is sampling urban hives from major cities, including Boston, Portland (OR), New York, San Francisco, Seattle, and Washington DC. For each of these cities, National Geographic reports the top three plants for honeybees based on relative DNA levels.

Here’s what I found amazing about this research:

      • The top sugar sources are from TREES. Not wildflowers. We don’t see bees visiting trees as easily as we see them visiting flowers, so our perceptions are biased. Over 75% of the sugar used for urban honey is from trees.

        Honeybee visiting flowering tree
      • The trees that are most popular for bee visitation are not necessarily native to those regions. Seattle bees, for instance, prefer linden and cypress trees, neither of which are part of the native coniferous forest. Likewise, the despised eucalyptus trees of San Francisco are one of the top three sugar sources.

        Flowers and leaves of linden
    • You’ll notice that I didn’t use the word “nectar” in describing what bees are collecting. That’s because much of the sugar they are gleaning isn’t coming from flowers. It’s coming from sap-sucking insects like aphids that produce honeydew. Bees apparently collect honeydew as well as floral nectar.

      Aphids!
    • Urban areas usually have higher plant diversity than rural areas, given the variety of woody and herbaceous plants that people use in their gardens and landscapes. The researchers speculate that this higher plant diversity may be one reason that urban hives are healthier and more productive than rural ones.

      Garden beehive

Many gardeners operate under the assumption that native plants are the best choice for gardens and landscapes. Though certain landscapes (like those undergoing ecological restoration) should only be planted with natives, there is no evidence-based reason that we shouldn’t be using non-invasive, introduced species as part of our planting palette.  In fact, research has demonstrated that tree species nativity plays only a minor role in urban landscape biodiversity: most animals learn to use new resources in their environment. Honeybees, considered to be “super-generalists” insects, are demonstrating that in spades.

Allium Fever

Ornamental onions are hot patooties.  From big, bold, purple globes to small pink half-moons, there is no end to ornamental onion-y goodness out there with 30+ species and cultivars in the trade.  There’s no substitute for ornamental onions in regards to architectural drama – the perfect geometric foil to wispy grasses, floral spikes, and umpteen daisy-thingies.  The seed heads from the sturdier species will persist and add interest to autumn and winter perennialscapes (not sure if that’s a word).

Art-of-Gardening-COVER-3D-1
Not one but TWO cultivars of Allium on the cover of the fabulous new Chanticleer book…

All are members of the Allium genus, just like those onions sprouting in your kitchen counter veg basket – hence the deer- and small mammal- resistance factor.  However…there are some issues.

  • Can be short-lived.  I have first-hand experience with this – plant, enjoy for a year or two, then…where did they go?
  • Bloom time is rather vaguely defined.  Most catalogs list “early summer” or “late spring” for most cultivars.  But if you want continuous purple orbs, what’s the order of bloom?
  • Can be expensive. Bulbs for some of the mammoth “softball” sizes will set you back $5-$7 each (the bulbs themselves are huge).  This is of particular concern due to the first item.
  • Foliage failure.  For some of the largest species and cultivars, the foliage starts to die back around (or even before) bloom time.  Not a lot of time to put the necessary energy back into that big honkin’ bulb.

We already have a multi-year lily perennialization trial going in conjunction with Cornell and some other institutions.  I thought I might try the same thing with Allium.

Student worker Lauren, after a long day of taking data on a gazillion lilies.
Student worker Lauren, after a long day of taking data on a gazillion lilies.

Unfortunately, I had this bright idea in November – well into the bulb-ordering season.  I tried to compile as complete an inventory as I could, ordering from several vendors.  Ended up with 28 species and cultivars – as much as the space prepared (check out that nice soil!)  could hold, at our urban horticulture center near campus (Virginia Tech is in Blacksburg, USDA Zone 6, about 2000′).  We put five or seven bulbs (depending on size) in each plot, and replicated the whole thing three times.

Ready to plant!
Ready to plant!

We’ll take data over the next three years on time of emergence, bloom time and duration, foliage duration (have a nifty chlorophyll meter that can help quantify that), some growth measurements, and perennial tendencies (or not).  My hope is to end up with a really specific chronology of bloom times plus life expectancy.  Yes, this was just a patented Holly wild hair; luckily I had some general funds to cover it. But I do think our little onion project will be of interest to more than a few folks, whether professional landscape designers or home gardeners.  I know I’m excited to see the results ($30 for five bulbs – yeek)!

 

 

Upside-down growing

I was poking through old photos and came across this oddity:upsidedowntrees

What you are looking at is Japanese maples (Acer palmatum) being grown hanging upside down. I saw this year ago at a nursery in Japan. (You are also probably looking at a disaster of girdling roots in those tiny plastic pots, but that’s another topic) When I asked about them, I was told that they are weeping forms, and grown this way temporarily before being planted in the ground right-side up.
Looking at the image, it makes me think that the particular variety grown here might have a mutation that makes them negatively gravitropic, and so respond to the pull of gravity in the opposite way a normal plant would. (For more on that see my earlier post on gravitropism in corn) Growing them upside down would allow them to produce a fairly normal branching pattern, and then once plants, new growth would, presumably, cascade down from the established trunk and stem.
Anyway. That’s your oddity for the day.
Joseph Tychonievich