People and Plants

Once again we wander down the path of botanical history.

George Julius Engelmann

George Julius Engelmann was a botanist, physician, and meteorologist, but is remembered primarily for his botanical monographs. George, also known as Georg, was born Feb. 2, 1809 in Frankfurt am Main, Germany, the oldest of thirteen children, nine of whom reached maturity.  Unusual for the time, his parents established and ran a successful school for young women there in Frankfurt.

Like most privileged young men of the time, George attended gymnasium. He started to take an interest in plants when he was 15 but was also keen on history, languages, and drawing. With the help of a scholarship, 1827 found him studying sciences at the University of Heidelberg. In 1828 young Engelmann, being embarrassed by his participation in a recent student political demonstration, decided to transfer to the University of Berlin for a couple of years. He then moved on to the University of Würzburg where he graduated in 1831 as a Doctor of Medicine. With shades of things to come, his dissertation for the medical degree was more related to botany than to medicine. It was devoted to morphology, the structure and forms of plants, and was illustrated with five plates of figures drawn and transferred to the lithographic stone by Engelmann himself. It was published in Frankfurt in 1832 under the title of De Antholysi Prodromus.

George Engelmann’s De Antholysi Prodromus, Plate 1

Spring and summer of 1832 found him in Paris where he was leading, ” a glorious life…in spite of the cholera,” but changes were on the horizon. His uncles wanted to make land investments along the Mississippi River and enlisted him to be their agent. In September of that year George sailed from Bremen to Baltimore and made his way to family already living in Illinois near St. Louis. For the next three years, to get a better lay of the land which he’d been hired to sell, he made many long horseback journeys alone through southern Illinois, Missouri, and Arkansas. While he did use his recently acquired regional knowledge in his new job, his botanical notes waited to be used in the future.

Tiring of the land agent role by late 1835, he moved to St. Louis to start a medical practise. Apparently needing more to do, in 1836 he founded a German newspaper called Das Westland. It contained articles on life and manners in the United States and was widely read and appreciated in the United States and Europe. Four years later his medical practise was well established and he’d earned enough money to make a trip back to his hometown. There he fell in love, got married, and the newlyweds then returned to America. When they landed in New York City Engelmann met Asa Gray, already a well known American botanist. A close friendship developed between the two which was ended only by death. 

Engelmannia peristenia

Eventually Engelmann’s medical practise in St. Louis became so successful he no longer needed to keep office hours: he simply saw patients in his study. This allowed him to take long vacations and devote more time to his preferred botany and biology studies. An 1842 monograph on dodders, A Monograph of North American Cuscutinae, had established his reputation as a botanist. He was one of the earliest to study Vitis (the grape species) of North America; nearly all that is known scientifically of these plants is due to his investigations. One of his most economically important discoveries was of the immunity of the North American grape to the plant pest Phylloxera, which became very significant later in the century during The Great French Wine Blight.

In the 1870s French vineyards came under attack by Phylloxera vastatrix which feeds on grape vines roots. Growers observed that certain imported American vines were resistant to the insect’s feeding habits. The French government dispatched a scientist to St. Louis to consult with the Missouri state entomologist and Engelmann, who had studied American grapes since the 1850s. Engelmann verified that certain living American species had resisted Phylloxera for nearly 40 years. Additionally it was found that Vitis riparia, a wild grape of the Mississippi Valley, did not cross pollinate with less resistant species which was the cause of previous growing failures. Engelmann arranged to have millions of shoots and seeds of V. riparia sent to France which eventually provided Phylloxera resistant rootstock and saved the French wine industry.

Phylloxera nymphs feeding on roots
Photo by Joachim Schmid

Other difficult plant groups Engelmann studied include cacti, conifers, mistletoes, rushes, and yuccas. In 1859, he published Cactaceae of the Boundary which studied cacti on the United States/Mexico border. A unique aspect of Engelmann’s cacti studies is he established, for the first time, the classification of these plants based on floral, fruit, and seed characteristics.  The source he referenced for this was Dr. Wislizenus’ Expedition from Missouri to North Mexico. Engelmann eventually published two books on cacti, both of which are still valued references. Other monographs he published are Notes on the Genus Yucca (1873) and Notes on Agaves (1875). The latter was illustrated with photographs, which is something we tend to expect now but was quite forward thinking at the time.

Hesperaloe engelmannii

In addition to his writing, both alone and in collaboration with others, Dr. Engelmann was also a founding member of the St. Louis Academy of Sciences and the National Academy of Sciences. He was instrumental in the establishment of the Missouri Botanical Garden by encouraging Henry Shaw, a wealthy St. Louis businessman, to develop his already extensive gardens to be of scientific as well as public use. What was then called “Shaw’s Gardens” eventually became the Missouri Botanical Garden. Engelmann’s botanical collection, which contains the original specimens from which many western plants have been named and described, was given to the Missouri Botanical Garden. This gift of almost 100,000 specimens led to the founding of the Henry Shaw School of Botany at Washington University in St. Louis, where an Engelmann Professorship of Botany was established by Shaw in his honor. His legacy also lives through the many plant species named in his honor, including Engelmann oak (Quercus engelmannii), Engelmann spruce (Picea engelmannii), Apache pine (Pinus engelmannii), and Engelmann’s quillwort (Isoetes engelmannii).

Engelmann died in 1884. He was interred next to his wife, who passed away in 1879, in the Bellefontiane Cemetery in St. Louis.

Opuntia engelmanni and friends

The botanical works of the late George Engelmann, collected for Henry Shaw, esq. /Ed. by William Trelease and Asa Gray.
https://archive.org/details/mobot31753000060878

PPT on digitizing Engelmann’s collection
https://www.slideshare.net/slideshow/digitizing-engelmanns-legacy-4745573/4745573

People and Plants

I thought this would be a fairly straightforward individual to research and write about. But no, talk about a rabbit hole.
Have you ever known someone that makes you ask, “They did what?” or “They’re where?” or “What are they up to now?”
If so, then you’ll recognize the type in this installment of People and Plants.

Friedrich Adolph Wislizenus

Friedrich/Frederick Adolph Wislizenus  was a German-born American medical doctor, explorer and botanist. The name Wislizenus traces its etymological roots back to Poland, specifically the town of Wislicza.
Friedrich A. Wislizenus is known for his printed recollections of travels to New Mexico territory and northern Mexico. He was born in Königsee, Germany on May 21, 1810, the youngest of three. The children were orphaned very young and a maternal uncle took them in. After completing “high school” at the Rudolstadt Gymnasium, Friedrich continued his studies at the Universities of Jena, Goettingen and Würzburg. In April 1833 he took a break from his schoolwork by actively participating in a revolutionary uprising against the existing German government. (Another participant of this event was Ferdinand Lindheimer.) The expected groundswell of support from the citizenry didn’t happen while a strong police presence did. In response Friedrich suddenly decided he should leave town.

Hymenothrix wislizeni
Trans-Pecos Thimblehead

He wound up in Zürich, Switzerland where he matriculated at the University of Zürich. His studies again suffered a brief interruption when he joined a movement to free Italy from monarchical rule. The expedition was disarmed by Swiss troops before reaching the border. There was nothing for our Friedrich to do but go back to the college from which he graduated in 1834 with high honors in Medicine.
Thereafter he decided to move to Paris to work but found no opportunities, so in the fall of 1834 he sailed for New York to hopefully establish himself in his profession.
By 1837 he had journeyed to Mascoutah, Illinois on the outskirts of St. Louis and was practicing his trade. Finding the practise of a country doctor’s life dull, monotonous, and lacking in remuneration, he relocated to St. Louis in 1839. 

Dimorphocarpa wislizeni
Spectacle Pod

Before settling down to resume his medical career Friedrich decided to make an extended journey into the farthest West. Scraping together his meager savings, he left the banks of the Mississippi in the spring of 1839 as a member of one of the annual expeditions of the Rocky Mountain Fur Company. His travels lead him into the far Northwest to the Wind River Mountains and then over the Rockies. Friedrich eventually reached Fort Hall on the Snake River, near the present site of Pocatello, Idaho, which at the time was the Southernmost trading post of the English who still held Oregon Territory in I839.
That’s a lot of ground to cover in six months.

Ft. Hall of the Oregon Trail fame.
We never made it, did you?

From Ft. Hall he intended to cross the Sierra Nevadas and wander into California. But this dream was shattered for the lack of a competent guide. So he ventured back along the banks of the Arkansas River to the Missouri border. This voyage proved to be quite an adventure due to the inability of finding facilities, supplies, and the lack of equipment. He finally reached St. Louis in 1840. His record of this journey of almost six months duration was first printed in German in 1840. His son later translated it into English and published it along with a biographical sketch in I9I2. Its observations on the flora and fauna are quite detailed and the Linneaus binomial scientific designations are often included. Topography and geologic findings are also noted along with meteorological reports.

Salvia microphylla var. wislizeni


Friedrich resumed his medical practice and soon became involved in various civic activities. He was a regular attendant at the Western Academy of Natural Sciences where he found a kindred spirit in Dr. George Engelmann. The two were to become life long friends to the extent of taking care of the other’s patients when one of them was out of town.
In 1846, finding he could no longer ignore his “itchy feet,” he joined a merchant expedition to Santa Fe in New Mexico Territory. With a goal in mind and the necessary instruments in a horse-drawn wagon, he and an assistant intended to gather information concerning a part of the continent about which little was known.

Senna/Cassia wislizeni

Upon reaching Santa Fe the intrepid band found the headlines and town chatter were full of news of the Mexican-American War. Despite the situation the group determined to travel south, cross the border, and make it to the state of Chihuahua by September, which they did. Immediately upon reaching their destination the entire company was imprisoned. Not being a man to waste an opportunity, Friedrich put the several months in a secluded mountain village to good use. The enforced stay resulted in collection of notes, observations and sketches concerning the flora, fauna, topography, and weather of northern Mexico. Finally in the spring of 1847 the prisoners were freed by Colonel Alexander Doniphan. Friedrich accepted Colonel Doniphan’s offer of a temporary appointment as surgeon in the U. S. Army and continued with the soldiery to the mouth of the Rio Grande. He then returned to St. Louis via New Orleans before 1847 had ended.

Epixiphium wislizeni
Photo by Patrick Alexander

Due to the efforts of Senator Thomas H. Benton, whom he’d become acquainted with, Wislizenus was summoned to Washington, D.C., and requested to publish his recollections, Memoir of a Tour to Northern Mexico in 1846 and 1847 by A. Wislizenus, M.D. This volume corrected many erroneous views of the western country and provided detailed descriptions (with maps and sketches) of the lands near the Rio Grande. The Senate ordered printing of 5,000 copies, which was a lot for the time, for distribution.

Ferocactus wislizeni
Photo by Benny Pol

Among the trophies brought from his travels were many new plants, both as samples and sketches. These were later studied by his good friend and colleague Dr. George Engelmann who named many of the specimens after Wislizenus.
Dr. Wislizenus also has a lizard named after him. The animal was first documented by Friedrich in Santa Fe, New Mexico Territory.

Gambelia wislizneii

The next several years saw Friedrich getting married, becoming a father and traveling the world, including Turkey, a visit to his hometown, Panama and finally getting to visit the West Coast of America. He returned to St. Louis in 1852 and spent the rest of his life there. He pursued scientific and civic interests, being one of the founders of the St. Louis Academy of Science and the Missouri Historical Society. He continued to indulge his love of meteorology and botany as long as his failing eyesight would allow. He died in September 1889 and he and his wife are buried on their estate near Kimmswick, Missouri on a high bluff overlooking the Mississippi River.

Populous deltoides ssp wislizenii


Dr. Wislizenus’ writings are available here:
https://www.biodiversitylibrary.org/creator/253456#/titles

To see list of plants attributed to Dr. Wislizenus go here:
https://tropicos.org/specimen/Search and type Wislizenus in the Senior Collector box and click on Search.

Landscape Malpractise Cases

Or “When to Fire Your Landscaper”

We have a guest writer for this week’s GP blog post, Teresa Watkins! She’s a professional landscaper and garden consultant in Florida (her bio is at the end of the column). As a professional she has seen “landscaper results” that will astound, scare, shock, or otherwise perturb you to no end. She has graciously shared photos and input for this blog post.


We hope this will be a series highlighting what to watch for when hiring a landscape company. Most of the following examples will have a “Caveat Emptor” feel to them. Just sayin’.


GP disclaimer: If you’re bothered by anything in this blog post please do not hold it against Ms. Watkins. Blame the editor who may have taken some liberties with the captions depending on how frustrated they felt at the time.


Let’s get started.

Case #1. Your landscaper charges you to edge dirt.

Don’t pay for “fluff work;” always inspect the bill and the job. Don’t assume the crew sent to do the job knows what to do. It’s up to you to know what needs to be done in your landscape. Please, always be polite when talking with the crews. They’re just doing their job.



Case #2. Your landscaper cut your plants so low to the ground they die.

Beware of landscaping crews wielding hedge shears and loppers, or even weed whackers. Yes, we’ve seen those used for a job like this. Make sure crews understand when to prune and how much to remove. This applies to cutting back or shearing shrubs into cupcakes, “Ding-dongs,” or other snack food shapes. Continuous shearing leads to early plant decline due to excess interior growth and shading. And it’s ugly.
Actually, if you have shrubs or hedges that have to be continually cut back perhaps it’s time to rethink that particular part of your landscape.



Case #3. Your landscaper continues to commit crepe murder.

Do we even have to discuss this anymore? Seriously. If the plant is too tall then remove it and plant something shorter.
https://nwdistrict.ifas.ufl.edu/hort/2018/01/10/correcting-crape-murder/


Case #4. Your landscaper plants a shade species in full sun, or vice versa.

OK, we can see what they were going for here – a color pop. But please read the plant tag! Always review the proposed plant list and diagram, and ask questions. Don’t trust the crew to know which plant goes where. They’re human and can make mistakes. If you’re concerned about what they’re doing tell them to stop and call the company owner or whomever you talked to and explain the situation. Remember you’re in charge, it’s your money, but always be polite.
…And those ferns look crowded for their mature size.
Well, they did follow the work order.


Case #5. Your landscaper insists on using herbicides for weed control along lawns, gardens and fence lines.

These photos show the accumulated effects of herbicide. There’s a three month’s difference between the photos; please note the continued plant death. Be sure crews are state certified pesticide applicators or have training in the application thereof (requirements vary by region). As the homeowner it is your responsibility to know what’s being sprayed. If you don’t want herbicides used then it’s up to you to specify that. If your requests are being ignored then it’s time to change companies. If the crew starts spraying against your wishes tell them to stop immediately. But be polite – they’re just doing their job.
Oops.

Our guest blogger, Teresa Watkins, is a landscape designer and owner of Sustainable Horticultural Environments. She creates unique, beautiful, and sustainable landscapes with her “gardening with soul” philosophy. Over 40,000 homeowners and professional landscapers have attended Teresa’s talks and programs. Teresa hosts Florida’s most popular syndicated radio garden show “Better Lawns and Gardens” Saturday mornings on WFLA-Orlando, iHeart, Spotify, Audioboom, iTunes, and on podcast. She enjoys traveling and leading garden tours, checking off incredible national and world gardens on her ‘bucket’ (pronounced ‘bouquet’) list. www.she-consulting.com

People and Plants

It’s time for our Spring edition of People and Plants. This time we’ll be taking a look at the life and accomplishments of Asa Gray.

Asa Gray in 1864
CC image

Asa Gray (November 18, 1810 – January 30, 1888), now considered the most important American botanist of the 19th century, had very humble beginnings. He was born in the back of his father’s tannery in Sauquoit, New York, the eldest of eight children. From childhood Asa was an avid reader. After completing grammar school in 1825 he attended the Fairfield Academy in Herkimer Co., New York and then went on to the Fairfield Medical College in 1826. It was then he began mounting botanical specimens. He got his medical degree and did eventually open a practise in Bridgewater, New York but never really “made a go of it”, he enjoyed botany much more. So much more that in the fall of 1831 he basically gave up his medical practise to devote more time to the study of plants.

By 1832 he was trading specimens with botanists not only in America but also in the Pacific Islands, Asia and Europe.
In early 1836 he became curator and librarian at the Lyceum of Natural History in New York, now called the New York Academy of Sciences, he resigned in 1837. In 1838 he took a position at the newly established University of Michigan as the Appointed Professor of Botany and Zoology. This position was the first devoted solely to botany at any educational institution in America. He was soon dispatched to Europe to purchase books to start the university’s library and for equipment, such as microscopes, to aid research. He spent a year traveling around Europe, visiting gardens and meeting important botanists of the day including William Hooker in Glasgow, Jospeh Descaisne in Paris, Stephan Endlicher in Vienna, and Augustin Pyramus de Candolle in Geneva. He returned to the USA in 1841.
Some trip, eh?

Gray in 1841
CC image

While he was in Paris at the Jardin des Plantes Gray came across an unnamed dried specimen, collected by André Michaux, and named it Shortia galacifolia. Over the next 38 years he spent considerable effort looking for a specimen in the wild. The first expedition in the summer of 1841 to an area in Ashe Co., North Carolina was unsuccessful. Further expeditions yielded the same negative results. In May 1877 a North Carolina herb collector found a plant he couldn’t identify. It was collected and sent to Joseph Whipple Congdon who contacted Gray telling him that he felt he’d found Shortia. Gray was thrilled to confirm this when he saw the specimen in October 1878. In spring 1879 Gray led an expedition to the spot where S. galacifolia had been found. Unfortunately, and much to his disappointment, Gray never saw the wild species in bloom.

Shortia galacifolia – 2013. Photographed in Oconee County, South Carolina.
CC image

In 1841 Gray was elected to the American Academy of Arts and Sciences. In 1842 he accepted the offer of a position at Harvard University. It included a salary of $1,000/year, teaching only botany, and being the superintendent of Harvard’s botanic garden. Though the salary was low the position allowed him plenty of time to do research and work in the garden. He was only 32.
At the time he had a priceless collection of more than 200,000 preserved plants, many of which he named as new species, and 2,000 botanical texts, which he donated to Harvard to found its botany department.

Asa Gray, the early years at Harvard
CC image

In the summer of 1844 Gray moved into what became known as the Asa Gray House in the Botanic Garden. As an academic, Gray was considered a weak lecturer but was highly regarded by his peers for his expert knowledge. He was better suited to teaching advanced rather than introductory classes, which he found tedious.
He eventually became well known by the outside of academia for his prolific writings and textbooks.

Asa Gray House

His first book, The Elements of Botany was published in 1836. In it Gray championed the idea that botany was useful not only to medicine, but also for farmers. His next work Flora of North America, co-authored with John Torrey, was published in 1938.
By the mid-1850s he had become so well-known that he wrote two high school-level texts in the late 1850s: First Lessons in Botany and Vegetable Physiology (1857) and How Plants Grow: A Simple Introduction to Structural Botany (1858). The publishers pressured Gray to make these two books non-technical enough so high school students and non-scientists could understand them.
A prolific writer, he was instrumental in unifying the taxonomy of North American plants. The most popular book was his Manual of the Botany of the Northern United States, from New England to Wisconsin and South to Ohio and Pennsylvania Inclusive, known today simply as Gray’s Manual. Gray was the sole author of the first five editions of the book and co-author of the sixth, with botanical illustrations by Isaac Sprague. Many editions have been published and it remains a standard in the field. 

Illustration from Gray’s Manual of the Botany of the Northern United States

Gray also worked extensively on a phenomenon called the “Asa Gray disjunction” which is the surprising morphological similarities between many eastern Asian and eastern North American plants.

Before 1840 Gray’s knowledge of Western US plants was limited to specimens sent him by collectors and colleagues working in the field. He worked with George Engelmann, Ferdinand Lindheimer, and Charles Wright who all collected widely in the Southwest including Texas, New Mexico, and parts of northern Mexico.
Accompanied by his wife, Gray finally traveled to the American West on two separate occasions, the first by train in 1872  and then again in 1877. Both times his goal was botanical research and sample collection to take back to Harvard. His collecting companion on these trips was Jospeh Dalton Hooker, son of William Hooker whom Gray had met in Glasgow on his first trip to Europe in 1838. Gray’s and Hooker’s research was reported in their joint 1880 publication, “The Vegetation of the Rocky Mountain Region and a Comparison with that of Other Parts of the World,” which appeared in volume six of Hayden’s Bulletin of the United States Geological and Geophysical Survey of the Territories.

Asa died in January of 1888 after suffering a stroke two months prior.

Aesculus discolor by Gray, from Plates Prepared between the Years 1849 and 1859 to Accompany a Report on the Forest Trees of North America
Public domain image

We’ve just skipped a stone across the pond of Asa Gray’s life. Here are some links if you’d like to learn more.
Asa at 200 –https://huh.harvard.edu/book/asa-gray-200
The Asa Gray Bulletin – https://www.jstor.org/journal/asagraybull
Asa Gray: Faith and Evolution – https://sciencemeetsfaith.wordpress.com/2020/11/17/asa-gray-bridging-faith-and-evolution/
Asa Gray online papers – https://onlinebooks.library.upenn.edu/webbin/book/lookupname?key=Gray%2C%20Asa%2C%201810%2D1888
Asa Gray Award – https://www.aspt.net/asa-gray-award

People and Plants

In this late fall edition of People and Plants we’ll take a look at an early American female botanist, Martha Daniell Logan.

Martha Logan’s signature. Courtesy of The South Carolina Historical Society.


She was born in 1704 in St. Thomas Parish, South Carolina, the second child of Robert Daniell and his second wife Martha Wainwright. After her father died in 1718 she inherited his land along the Wando River. In 1719, Martha married George Logan, Jr. and they lived on the Wando River, ten miles from Charleston, where both the Daniell and the Logan families owned extensive property.  Over the next sixteen years, she gave birth to eight children, six surviving to adulthood.  In 1750 the family moved to a plantation near Charleston. Needing to enhance the family income she advertised her services as a teacher but her attention gradually shifted to horticulture. She began her botanical career collecting in the woods near her home.

The title page of the 1757 South Carolina Almanack which contained Martha Logan’s “Gardener’s Kalendar.” Image courtesy of the South Carolina Historical Society, Charleston, S.C.

Martha soon gained the reputation of a skilled gardener and maintained a well-known garden “on the Green, near Trott’s Point in Charles Town.” Gardening became her focus and occupation and she embarked on a career as a “purveyor of botanical goods,” selling seeds and plants from her home. 
In addition to native plants, she dealt in imported specimens. Gardening, especially landscaping with rare plants, had become a favored pastime among wealthy locals and Martha was quick to capitalize on this. An advertisement published in the Gazette on November 12, 1753, announced the availability of “a parcel of very good seeds, flower roots, and fruit stones of several kinds” that were “just imported from London.”

Page of the 1757 South Carolina Almanack print of Martha Logan’s “Gardener’s Kalendar.” Image courtesy of the South Carolina Historical Society, Charleston, S.C.

She exchanged seeds, roots, and plants, like gardeners do, with other botanical enthusiasts including the naturalist John Bartram. His visit in 1760 initiated a three year correspondence and trade of specimens. They swapped lists of available plants and used silk bags to send seeds to each other. They also exchanged lists of plants that each desired from the other’s geographical area. Logan enthusiastically sent Bartram plants from Carolina which “may be New to you” and “be an adision [addition] to yr Collection.” In return, she asked him to send bulbs and double-flowering plants that her London contacts had failed to procure or took too long to send. She shipped and received tubs of cuttings and roots on ships traveling between Charleston and Philadelphia, where Bartram lived. Bartram praised her in a letter to a London friend and wrote, “Mrs. Logan’s garden is her delight and she has a fine one.”

Page of the 1757 South Carolina Almanack print of Martha Logan’s “Gardener’s Kalendar.. Image courtesy of the South Carolina Historical Society, Charleston, S.C.

With the popularity of urban gardening on the rise Martha realized that many people needed help and guidance with their horticultural endeavors. In 1752 her first advice column titled “Gardners Kalander [sic], done by a Lady of this Province, and esteemed a very good one.” appeared in the South Carolina Almanack. Her first publication was so successful she continued to publish her calendar, updating and enlarging it each year.

Page of the 1757 South Carolina Almanack print of Martha Logan’s “Gardener’s Kalendar.” Image courtesy of the South Carolina Historical Society, Charleston, S.C.

Martha continued her business, what we nowadays would call a garden center, for the rest of her life. She even wrote a treatise on gardening at the age of seventy. In 1809 the early Charleston historian David Ramsay described her as “a great florist, and uncommonly fond of a garden,” and claimed she “reduced the knowledge she had acquired by long experience, and observation, to a regular system which . . . to this day regulates the practice of gardens in and around Charleston.”

Page of the 1757 South Carolina Almanack print of Martha Logan’s “Gardener’s Kalendar.” Image courtesy of the South Carolina Historical Society, Charleston, S.C.

Martha died in Charleston on June 28, 1779, and was buried in St. Philip’s Churchyard. She is considered one of the founding gardeners of South Carolina.


Read back through the pages of her 1757 Gardener’s Kalendar shared above. In your opinion, how much of it is still applicable? One bit of her advice that is always appreciated: “What was neglected last month may be successfully done in this.”

A Toast to Agaves

Agaves, those bat pollinated, succulent, strong leaved, slow-growing, xeric- and heat-loving Western Hemisphere plants, are literally the heart of the tequila and mezcal industry. As fascinating as the bat pollinator aspect is we’re going to focus on the how agaves are used to produce liquor.

Image by Jesus Cervantes/Shutterstock


Let’s start with the differences between mezcal and tequila. These include region of origin, plants used and production methods.

We’ll start with regions and plants.

The name “mezcal” comes from the Nahuatl word “mexcalli” which means “oven-cooked agave.” Although mezcal can be made from any agave species, production focuses on roughly 30 agave species, varieties, and sub-varieties. While mezcal’s history centers around the region of Oaxaca, Mexico, it’s now produced throughout the country. As mezcal can be made with any agave species the name has become a general one for most agave liquors in Mexico. It often implies an artisanal aspect to the drink whether it’s deserved or not. In 1994 the name mezcal was recognized as an Appellation of Origin  (AO, DO). There is also a Geographical Indication (GI), originally limited to the states of Durango, Guerrero, Oaxaca, Puebla, San Luis Potosí, and Zacatecas. Similar products are made in Guanajuato, Jalisco, Michoacán, and Tamaulipas but these have not been included in the mezcal DO.

(Patricia Zavala Gutiérrez/Global Press Journal)

While both mezcal and tequila are made with agave, only one species is legally allowed for tequila production, the blue agave.
Tequila production is located primarily in the area surrounding the city of Tequila, which is northwest of Guadalajara, and in the Jaliscan Highlands of the central western Mexican state of Jalisco.  Tequila is also recognized as an Appellation of Origin (AO, DO). It can be produced only in the state of Jalisco and limited municipalities in the states of Guanajuato, Michoacan, Nayarit, and Tamaulipas.

Blue agave field
Photo by Christian Heeb

Now let’s take a look at production methods. Harvesting agave for mezcal and tequila production starts out the same.

Seven to ten years after planting the plants are mature enough to harvest. They are manually harvest by “jimadors,” highly skilled people trained in the art of agave harvesting. It’s hard, labor-intensive work.

Using machetes or a “coa de jima”, a specialized agave cutter, the jimadors cut off the long agave leaves to get to the core of the plant called the piña.

The piñas are collected and taken for roasting. Roasting method is where mezcal and tequila production methods differ.

Pit roasting the piñas is traditional for mezcal production.

Agave piña roasting pit for making Mezcal
The rocks in the pit are first heated with charcoal
When the the temperature is correct, the piñas are added.
Alternating layers of piñas and chopped agave leaves are added until the pit is full.

The entire thing is covered and left to smoke for 2-7 days depending desired smokiness of the final product.
Roasted piñas.

Cooking piñas for tequila is a much simpler process. They’re actually baked.

Traditional brick ovens can be used.
Or large metal ones such as these.
The end result is the same.

After roasting or baking the piñas receive the same treatment regardless of the final product, mezcal or tequila. They’re crushed or shredded to extract the juice which is then fermented for a period of time. The fermented product is then distilled twice and then usually aged. Some mezcal is not and is sold a “joven” or young. Aging can last from one month to as long as 12 years. After aging the liquor is usually stored in stainless steel tanks to reduce evaporation.

And yes, I hear you there in the back row, “But what about the worm?!”

Gusano de Maguey in a bottle, waiting to be added to finished mezcal.

The worms are only found in mezcal, never tequila, and not all bottles have one. Bottles of mezcal which have a worm (called gusano) are labeled “con gusano,” meaning “with worm.” The worm is actually a caterpillar of the moth Comadia redtenbacheri which can infest agaves. If a “worm” is to be included it’s added at bottling. Doesn’t that sound like a fun job.

There are various stories as to why a “worm” would be added. Some claim it’s a marketing ploy. Others say it’s there to prove that the mezcal is fit to drink…OK. Others believe that it brings good fortune and strength to the lucky person who finds it in their glass. If you’re fortunate to find one in your glass be sure to swallow it whole, don’t chew it. And some claim it’s there to impart flavor. Yummy.

Mmmm, pickled ‘pillar!

And lastly, I’m sure some of you have seen “worm suckers” at shopping emporiums which carry a certain type of tourist stuff with a (supposedly) south-of-the-border flavor. Yes, I’m talking about the famous, or infamous, tequila-flavored worm sucker.

Also available in different colors and flavors. Look for them at finer tourist traps across the Southwest USA.

Don’t fall for this! As educated and discerning Garden Professors blog post readers you now know that #1: Tequila never contains a worm and #2: the “worm” is actually a caterpillar and the above critters encased in sugar are actually the larvae of the darkling beetle, commonly known as mealworms. Be a savvy consumer, hold out for the real thing.

People and Plants

In this edition of P&P we’ll be exploring the life of the “Father of Texas Botany”, Ferdinand Jacob Lindheimer.

On May 21, 1801, Herr and Frau Lindheimer of Frankfurt, Germany welcomed little blue-eyed Ferdinand to the family. After schooling at the Frankfurt Gymnasium and a Berlin prep school, Ferdinand spent the next 30 years studying at universities in Bonn, Jena, and Wiesbaden.

In 1833, for political reasons, Ferdinand decided it was best for him to leave Germany. By 1834 he was in Belleville, Illinois. Not finding Belleville to his liking, he caught a boat down the Mississippi to New Orleans, LA.

“Port City of New Orleans” by Adrien Persac.
COURTESY OF THE HISTORIC NEW ORLEANS COLLECTION

After some time he and a few companions tried to go to Texas. But the Texas revolution was heating up and they wound up being sidetracked to Mexico, eventually winding up in Veracruz. There he worked on a banana plantation for over a year all the while becoming infatuated with the regional flora and fauna. But he still wanted to go to Texas and left Mexico just as the hostilities in Texas were escalating. In an effort to reach Texas he tried joining the Texas revolutionaries but alas, it was not to be. He wound up ship-wrecked on the Alabama coast near Mobile.

So close and yet, so far.

Being the headstrong German that he was, he tried once again to reach Texas and finally arrived at San Jacinto (pronounced Hah-seen-toe) the day AFTER the final battle of the Texas Revolution on April 22, 1836. Despite missing most of the action he joined the army of the new Republic of Texas and served 19 months. During this time and after his discharge in 1837 he spent any free time exploring the flora of his new home.

An old friend from Frankfurt, Georg Engelmann, invited Lindheimer to spend the winters of 1839–40 and 1842–43 with him in St. Louis. (Englemann had immigrated to America in 1832 and dabbled in botany as a hobby.) Lindheimer brought preserved Texas plant samples with him on these visits. Via their friendship Lindheimer’s collections came to the attention of professor Asa Gray, founder of the Gray Herbarium at Harvard University and author of the original Gray’s Manual of the Botany of the Northern United States. The plants from the Republic of Texas generated quite a bit of excitement in old Harvard Yard.

In 1843 arrangements were made for Lindheimer to collect plant specimens for Engelmann and Gray. He spent the next nine years collecting from a variety of Texas areas, including Chocolate Bayou, Cat Springs, Matagorda Bay, Indianola, and Comanche Springs. 

Over the next thirteen years, Lindheimer collected over fifteen hundred species in central and south Texas for Engelmann, Gray and others who were building collections. The samples had to be pressed and dried with multiple changes of blotting paper, then mounted and shipped. The collection date, location and habitat were logged for each specimen. Lindheimer earned $8 for each hundred specimens submitted. Occasionally he sent seeds or cuttings so Gray could try propagating the plants at Harvard. Using his own knowledge and whatever reference materials he could find, Lindheimer could place most plants in the appropriate family and make a good guess at the genus. But official classification was left to the scholars who received his samples.

Ipomea lindheimeri 
Photo by Greg Goodwin
https://www.wildflower.org/plants/result.php?id_plant=ipli

In 1844 Lindheimer was granted land on the Comal River in the new community of New Braunfels, TX. and remained in the area for the rest of his life. He kept collecting, started a botanical garden, and in 1852 was elected the editor for the town newspaper, Neu Braunfelser Zeitung, one of the earliest newspapers in Texas. He was associated with the paper for the next 20 years, eventually becoming the publisher. Legend is that it never missed an issue, not even during the Civil War when newsprint was not to be had. Lindheimer printed on butcher paper, wrapping paper, and leftover paper from his plant-preserving supplies.

Neu-Braunfelser Zeitung (New Braunfels, Tex.), Vol. 1, No. 16, Ed. 1 Friday, February 25, 1853

In 1872 Lindheimer ended his association with the paper to devote more time to his work as a naturalist. He is credited with discovering several hundred plant species and his name is used to designate forty eight species and subspecies of plants and one species of snake. ( I really wanted to put a picture of the snake here but was advised that some people don’t like reptiles as much as I do. Sigh)

In 1879 his essays and memoirs were published under the title Aufsätze und Abhandlungen.

Lindheimer died on December 2, 1879, and was buried in New Braunfels. His grave is registered on The Historical Marker Database and his house on Comal Street in New Braunfels, is a museum, a Registered Texas Historic Landmark and is on the National Register of Historic Places.

Lindheimer’s plant collections can be found in at least twenty institutions, including the Missouri Botanical Gardens, the British Museum, the Durand Herbarium and Museum of Natural History in Paris, the Harvard University Herbaria, the Smithsonian Institution, and the Komarov Botanic Institute in St. Petersburg

Want to learn more about Ferdinand Lindheimer?

https://biodiversity.utexas.edu/news/entry/the-father-of-texas-botany#:~:text=Many%20species%20in%20central%20Texas,shows%20up%20in%20people%27s%20houses.

https://www.tamupress.com/book/9781623498764/the-writings-of-ferdinand-lindheimer/

https://www.tamupress.com/book/9781585440214/life-among-the-texas-flora/

https://archive.org/details/mobot31753003757678

Tulips for the desert?

Spring bulb planting time is on across North America!  Many types of bulbs do well in desert and xeric gardens: hyacinths, ranunculus, iris, narcissus, crocus, alliums can all be happy. One bulb that’s often left off the list are tulips. Why is that?

The tall flashy hybrid or Darwinian tulips that fill the catalog photos are usually considered an annual in most desert gardens. They require more chilling than the our desert winters can usually provide and can be a little fussy about soil and water.
But tulips can be very happy in xeriscapes. In fact they can get so happy they’ll set seed and naturalize in the right conditions. And which tulips are those you ask? (Yes you did, I heard you.)
They’re species tulips and are non-hybridized. They’re more of “wild” type of plant. What’s so special about them?
They’re tough, amazingly tough.

Tulips are originally from mountainous areas of the Mediterranean, Middle East and Asia. Some are also native to Southern Europe, North Africa, and several Mediterranean islands. They’re frequently found clinging to barren mountain ledges, rocky areas exposed to wind and cold, and drought ridden slopes.

Map by Tulips in the Wild
For an interactive format with species information go here:
https://www.tulipsinthewild.com/map_table/tulip_origin_map.html

Species tulips are shorter and smaller than hybrids but what they lack in stature they more than make up for in resilience and showy display. They’re an early bloomer in the desert southwest which is wonderful for the pollinators that are often active on warm winter and early spring days.

Their foliage is usually more varied than hybrids; some have broad, curled edged leaves, some are tall and narrow. The color varies too, from a bluish tint to shades of green. Some varieties even have multiple blooms per stem.

Many species are attractive whether the blooms are closed or opened. They often have very different coloration inside and out.

Closed…
…and open

Some have contrasting pollen color which adds great visual interest.

These have a deep purple pollen.

Species tulips are usually perennial in warm winter climates. They increase via bulb offsets while many will set seed. They aren’t fussy about soil as long as it’s well drained. But like all plants they do require water during bloom and while the leaves are green but still, not as much as other bulbs. They’re perfect for xeriscaped or low water landscapes since they require less overall water than other bulbs. Plus, they prefer to be dry during their dormant season, which is summer to fall.

These tough little beauties can occasionally be found in garden centers but for the best selection shop online, search for “species tulips.” Do some homework first, and become familiar with the the available varieties.

Plant these tulips from fall to early winter. Provide full sun and good drainage, rocky or lean sandy soils are ideal and most closely approximate their native conditions.

Don’t overplant with species that require a lot of summer water. Mix these bulbs with other plants that prefer hot dry conditions. Tuck them into those corners that get spring – early summer sunshine, spots that don’t get much summer water, or put in containers that you can enjoy and then ignore during the summer. Pot them in cactus mix combined with a small amount of regular potting soil and top with an organic mulch. Remember, drainage is a must and overly rich or high organic matter conditions aren’t to their liking.

If you live in a dry or desert region and have never tried species tulips, why not give them chance. You might just discover a new favorite.

People and Plants

In this episode of P&P we’ll take a look at the life and career of the aptly named Nehemiah Grew, the “Father of Plant Anatomy”.

Nehemiah Grew
1641-1712

Nehemiah Grew was born on September 26, 1641 in Warwickshire, UK. He graduated from Pembroke College, Cambridge in 1661 and ten years later was awarded a MD degree from Leiden University in the Netherlands.
His interest in plant anatomy began to bud in 1664. In 1670 his essay, The Anatomy of Vegetables begun, was shared with the Royal Society and resulted in his election to the membership.
By 1672 he’d put down roots in London and soon had a large medical practise. Even though he was busy with his career as a physician he still found time over the next decade to write a couple of books, a few short publications on botany and several papers one of which has the intriguing title, “Comparative Anatomy of Stomachs and Guts” and was included in his “Catalog and Description of Rarities” publication, ca. 1681.

Photo courtesy of Royal Society (Great Britain) Museum.

In 1682 his tome, The Anatomy of Plants begun as a philosophical history of plants“, was published. It’s largely a collection of previous publications and is divided into four books, Anatomy of Vegetables begunAnatomy of RootsAnatomy of Trunks and Anatomy of Leaves, Flowers, Fruits and Seeds. It has eight-two illustrated plates and an appendix of seven papers which deal mainly with chemistry.
The book is noted for its descriptions of plant structure, a fairly unknown thing at that time. Grew described nearly all the key differences of stem and root morphology and showed that the flowers of the Asteraceae family are composed of multiple tiny tube flowers (florets). The most amazing of his discoveries was that plants reproduce sexually and that flowers are sexual organs. He distinguished and assigned “roles” to the calyx, corolla, pistils, and stamens.


Grew is remembered for being one of the first to establish the observational basis for botany and is noted for his detailed descriptions of plant anatomy. He utilized the microscope (invented in 1590) for his plant anatomy explorations and was a pioneer in this field. His book “Anatomy of Plants…” contains the first known microscopic description of pollen. He discovered that although all pollen is roughly globular, its size and shape varies between species; however pollen grains within a species are all alike. This discovery is central to the field of Palynology, “the study of dust”, which is the study of pollen and particulate samples both organic and inorganic.

Plate from Nehemiah Grew’s The Anatomy of Plants (1682)
Source 

Grew’s research technique was based on his adherence to observations and avoidance of explanations invoking occult, hidden or vital forces, or signatures. He also avoided the direct hand, intervention, or guidance by God or other spiritual beings.
He embraced a mechanical and natural philosophy which permitted him to think much like an engineer or how to make the most out of the materials at hand. This engineering concept was theologically acceptable during his time.
Why is this significant?
This ‘Mechanical way’ and Grew’s own theory of “Organ-ism”, that plants possess organs and structure, was outside the bounds of most of the thinking of his time. Before the 17th century it wasn’t certain that plants had much internal structure and that distinct parts or organs played distinct roles. It was often thought that the external shape of a plant was a clue or signature to its use, re: Doctrine of Signatures. But whether there was anything resembling organs in plants was contested. Grew’s detailed illustrations help dispel that belief and bring the study of plants into the scientific world.

Plate from Nehemiah Grew’s The Anatomy of Plants (1682)
Source

In honor of Nehemiah’s work and role as a founder of modern botany, Carl Linnaeus named the genus Grewia after Nehemiah Grew. Grewia is in the Malvaceae family and can be found in several areas including Africa, India, and Australia where it has naturalized and become invasive.
Its fruit comes in both sweet and tart varieties and is used for food and beverages. Other parts of the plant have been used medicinally.

Grewia occidentalis
Image by Giuseppe Mazza

Like to know more?
Part 1 | Christoffer Basse Eriksen: Nehemiah Grew and the Making of the “Anatomy of Plants” (1682) – Lecture

Part 2 | Christoffer Basse Eriksen: Nehemiah Grew and the Making of the “Anatomy of Plants” (1682) – Response & Panel Discussion