What we expect in the 2024 growing season

As I write this, about half of the lower 48 United States has passed the median date of the last freeze according to the National Centers for Environmental Information. Here in the Southeast, we are well into the planting season even though our usually early planting for crops like corn was delayed due to very wet soil. The rest of you may have to wait for a few more weeks before you can put any heat-loving plants into the ground. As we enter the growing season for the majority of the country I thought it might be helpful to take an updated look at what we expect this summer and fall to give you an idea of what conditions you might experience.

Bluebonnets. Source: Willwpn10, Commons Wikimedia.

What factors will control the climate this summer?

In the Southeast most gardeners say that you should not plant summer crops and flowers until after Easter, although since Easter has a variable date that can sometimes be a problem when it is unusually early. In western Michigan where I grew up my grandmother always told me to wait until after Memorial Day. What rule of thumb do you use? If you look at the map below, you can see why! Wherever you garden you need to know the specific weather and climate to expect in your location. That includes things like the plant hardiness zone, how much rain to expect, and the specific microclimates within your garden (especially if it is a large one). That will help you pick the plants and trees that will do best in your location.

Every year is unique in terms of what temperature and precipitation patterns occur, but in many parts of the country we can get some indications of what might occur due to large-scale climate patterns that are occurring across the world. Of course these also affect the weather in other places from Europe to Australia and points in between, but I am going to focus on the US in this post.

The biggest patterns that are going to be affecting the climate this summer include 1) rising temperatures due to greenhouse warming, 2) the predicted transition from a strong El Niño to a La Niña later this summer, and 3) unusual warmth in the Atlantic Ocean which will affect the development of tropical storms and hurricanes in this year’s Atlantic Tropical Season.

Impacts of greenhouse warming trend

As temperatures rises around the globe we can expect both daytime high temperatures and overnight low temperatures to increase in temperature. In most areas the minimum overnight temperatures are rising faster than the daytime highs. This is due to a combination of increased humidity caused by increases in evaporation and more water-holding capacity of the air and heat-trapping in urban areas due to pavement and buildings. You can determine trends in temperature and precipitation for your location using the “Climate at a Glance” tool for anywhere in the continental US, including maximum and minimum temperature. The increased humidity will increase the likelihood of fungal diseases in plants that are susceptible so you will want to watch carefully and be prepared to treat them. You should also watch for protracted hot, dry spells and increased water usage, which might require you to water more often. But keep in mind that while the average temperature might be warmer, there will still be ups and downs with the daily weather.

Source: Albarubescens , Commons Wikimedia

Impacts of El Niño swinging to La Niña

We are currently in a waning El Niño (EN) after experiencing a strong EN over the winter. The winter weather pattern showed a very clear EN pattern over most of the country (and other parts of the world for that matter) with unusual warmth and dry conditions in the northern US and wet, somewhat cooler, cloudier conditions in the southern part of the country although that was tempered by the long-term temperature trend upward. The current EN is expected to disappear rapidly over the next few months and swing to the opposite phase, La Niña (LN), by mid to late summer as shown below. I also discussed this back in February. This LN will likely control our weather for a good part of the rest of 2024 and into the spring of 2025.

Source: https://iri.columbia.edu/our-expertise/climate/forecasts/enso/current/

How will this affect the growing season weather in the US? While the correlation between LN or EN and summer weather is less strong than the winter correlation, we do expect to see some lingering effects of EN for the next few months before LN kicks in. That means wetter conditions are likely to continue in the southeastern US for the next few months before dry and sunny conditions move in later this summer or fall. The timing of when that transition occurs depends on how quickly the transition from EN to LN occurs. It is changing right now, but it’s still too early to tell how soon it will affect our summer weather. In the northern US we will probably see more seasonal weather for the next few months but next winter is likely to be much colder and wetter than last year. Again, the transition should occur later this summer but could wait until late fall to really become apparent. Some areas like the Central Plains are not very predictable by the phase of EN or LN so we are less certain about what you will experience if you live there. You can see the lack of certainty in the May-July temperature map below.

The warm Atlantic and what we expect from the Atlantic tropics this year

Last year, we had 19 named storms plus three other unnamed storms that were close to tropical status. This is in spite of the El Niño, which usually suppresses development of tropical systems because of strong winds aloft that keep tropical storms from developing the vertical structure they need to grow. Most of those storms stayed over the Atlantic Ocean where the water temperatures have been at record-setting levels for over a year. They are still at record-setting levels now and are even hotter than last year at this time. This year with a La Niña there is not much to keep storms from developing so I expect to see more storms, especially in the western Atlantic and in the Gulf, where they are more likely to come onshore and do damage or drop a lot of rain along their paths. I have seen predictions of as many as 33 named storms this year, although that would be a record and climatologists don’t generally like to forecast record values. A more conservative value of mid-20s for named storms seems more likely, although this is still a lot more than we usually get. What you actually experience depends critically on the path that the storms take, which cannot be predicted until after the storms form. So you could get hit directly by strong winds and heavy rain or you could be in the area outside the path with clear skies, sinking air, and no rain at all.

No matter how many named storms we get, those of you who live in the eastern US where a hurricane or tropical storm (or their remnants, which can also carry flooding rain to places far away from the tropics) can travel should be watching carefully when the storms start popping later this spring or early summer. Conversely if you live in the western US, you may see less activity this year than last year since when LN is strong, the Eastern Pacific Ocean (EPO) storms have a harder time developing due to the colder ocean water in the EPO associated with LN. But with rising global temperatures we are in uncharted territory so surprises are always possible.

What NOAA’s Climate Prediction Center predicts

The combination of all of these factors (and other climate influences as well) is collected into NOAA’s Climate Prediction Center maps. I have shown the one for May through July 2024 below. It shows the likelihood of wet conditions in the Southeast and drier conditions out west associated with the lagging EN conditions. You can see maps for other time periods at Climate Prediction Center – Seasonal Outlook (noaa.gov).

For gardeners, if you are in the region where frost is still likely, you should hold off on planting tender vegetables and flowers at this point or at least start them inside. If you are in the southern reaches where frost is no longer likely then you can (and probably are already) plant the summer flowers and vegetables you are craving to set out, as long as no cold outbreaks are predicted. If you live in an area that is affected either directly by tropical storms and hurricanes or indirectly by heavy rains that remain after the storm has weakened now is a good time to clear out dead limbs and other potential flying debris, think about drainage in your gardens in case of heavy rain. Please make your hurricane plans in case one tracks over you (you can find one for Georgia at https://gacoast.uga.edu/wp-content/uploads/2020/08/ResidentsHandbook.pdf but most of the information there is relevant to large parts of the country). If you live in other parts of the country like the western states, you could see dry conditions and potential wildfires return to those areas so you should prepare for those conditions. By late fall, the La Niña should be well established and dry conditions are likely to occur in the southern tier of the US while cold and wet conditions are more likely in the northern states.

Spring with flowers. Source: Larisa Koshkina, Commons Wikimedia.

This bud (removal) is for you: Does early flower removal aid plant establishment in fruiting plants like tomatoes?

In many publications and garden resources you see the suggestion to remove flower buds to improve establishment of new fruit and vegetable plants. This advice is shared for both woody and perennial plants like fruit trees and strawberries and for annuals like tomatoes and peppers. And whenever you see someone stating this as gospel, you see someone else stating that it is false or only anecdotal. So the question is – does research support the advice to remove early plant blossoms to improve vegetative plant growth and establishment? Let’s take a look at some recent, and not so recent, research to see what really happens and understand the process.

The Physiological Process

Prior to my extension career teaching people gardening, I fancied myself a budding (ha ha) plant science researcher. Many of my classes, therefore, were focused on plant physiology and genetics. Not necessarily handy in teaching people the basics of gardening, but pretty damn handy in explaining how plant processes work.

As most upper elementary and middle school students will tell you, plants make their own food in the form of the sugar glucose by using energy from the sun through photosynthesis. That glucose is used in the respiration process to release the energy for the plant to use, transformed into other sugars and compounds for functions around the plant, or turned into starch for long-term storage. Photosynthesis is not an unlimited process and genetics, environment, and other factors play a role in the rate of energy development. So it stands to reason that there are lots of things that have to happen with the finite resources made by the plant.

In plant physiology circles, photosynthesis is called the “source” of plant energy and those uses, such as root, leaf, stem, wood, flower, and fruit production and storage are called “sinks” (sometimes also “pools”). Researchers often discuss these pathways as “source-sink” interactions. Since there are only so many carbohydrates to go around, researchers have long known that when demand is high for growth of certain structures that development of other structures is slowed. If there is a period of rapid root growth, the demand for carbohydrates in the roots increases and the availability for other locations in the plant is decreased. As a result growth in the leaves, stems, or reproductive organs may slow until a supply is restored. But this phenomenon varies by plant species and even cultivar/type, as genetics does play a role in the rate of photosynthesis. Some plants have a higher level of photosynthesis to help offset the sudden upswing of need, and some don’t.

Source: Michael G Ryan, Ram Oren, Richard H Waring, Fruiting and sink competition, Tree Physiology, Volume 38, Issue 9, September 2018, Pages 1261–1266

Think of it like a household budget, but you have a job that only pays you in months that are warm and sunny. You have a set monthly income (the source) and then your housing, utilities, food, and other bills to pay (the sinks). Plus, hopefully you are saving some money for later somehow (another sink). If your bill sinks are greater than your income source, you might dip into your savings a bit, but you don’t want to take it all because you will need most of it in the months when you don’t get paid because it is cold and dreary, or your leaves have fallen off, or your herbaceous bits have died back. As a plant you don’t qualify for credit so the only way to make things work is to cut back in some areas (a sad reality for many on limited incomes). You have to reduce your utility usage, cut back on more expensive foods, find cheaper rent, etc. Similarly, a plant has to reduce the amount of energy used for, say, root growth if it has a rapid leaf growth.

And if you have a kid then the expenses go way up, right? That’s what happens when a plant is just minding its business, enjoying a free and frivolous lifestyle when all of a sudden reproduction comes along. First flower structure development, then fruit development. Plants that have a higher rate of photosynthesis have a higher budget to pull from, so the change may be minimal. But when photosynthesis rates are low, like in newly developing plants with few leaves, unfavorable environments, or genetic limits, the effect can be significant.

So, what about my plant?

The question we always get is, “is it necessary to remove the early blossoms on my ______ plant to help it get established?” For perennials like fruit trees, that would generally be the first few years. For annuals like tomatoes, it would be removing blossoms the first few weeks after planting (and removing any blossoms developed before transplanting).  The answer is…maybe. Or more like, there probably is an effect, but it depends on the plant and environment as to how impactful the effect is. This phenomenon has been observed in several species, including Douglas fir, peaches, olives, and more.

For example, research shows that letting blueberry bushes fruit the first two years after planting (not removing flowers or fruits) reduces the biomass (vegetative growth) AND the yield in year 3. The plants will likely catch up in later years, but if your goal is to get plants established early and have fuller harvests sooner, removing flowers in years 1 and 2 would be advisable.

The same can be said for strawberries. The abstract from this paper from 1953 (I couldn’t track down the full article prior to publication) says that “removal of blossom from newly set strawberry plants helps more in the establishment of a vigorous planting than almost any other cultural operation.” This paper doesn’t measure biomass, but did find that removing flowers on day-neutral strawberries (that produce throughout the growing season) until July 1 resulted in maximized yields in the later season and removal of flowers for the entirety of the first year resulted in maximized yields in year 2 (note: in commercial strawberry production, strawberries are usually grown as an annual or at most a biennial, so maximizing early yields is important).

Now, for the all important tomato (drumroll, please). This study from the 70s found that removal of early blooms on indeterminate tomato plants resulted in larger plants (higher vegetative growth) and that eventually the fruit yield nearly caught up with the controls. They found that when fruit development started, leaf growth was “markedly depressed” and root growth ceased (and there was even some root death). So while there was ultimately a small loss of yield, the result was a better established plant that would likely be able to better weather environmental and disease issues throughout the season.

And beyond establishment, flower and/or fruit thinning on plants with high floral numbers has been shown in many plants (apples, blueberries, peaches, and tomatoes, to name a few) to result in larger, higher quality fruits. The same pathways apply here – each and every fruit is a sink. The more sinks you have, the more “mouths” the plant has to feed. So flower removal is a viable production strategy for many different crops and something that home gardeners should think about if you want the biggest, and juiciest fruits on the block.

Sources:

  • Chanana, Y. R., et al. “Effect of flowers and fruit thinning on maturity, yield and quality in peach (Prunus persica Batsch).” Indian Journal of Horticulture 55.4 (1998): 323-326.
  • Dejong, Theodore M., and Yaffa L. Grossman. “Quantifying sink and source limitations on dry matter partitioning to fruit growth in peach trees.” Physiologia Plantarum 95.3 (1995): 437-443.
  • Eis, S., E. H. Garman, and L. F. Ebell. “Relation between cone production and diameter increment of Douglas fir (Pseudotsuga menziesii (Mirb.) Franco), grand fir (Abies grandis (Dougl.) Lindl.), and western white pine (Pinus monticola Dougl.).” Canadian Journal of Botany 43.12 (1965): 1553-1559.
  • Hesami, Abdolali, Saadat Sarikhani Khorami, and Seyedeh Samaneh Hosseini. “Effect of shoot pruning and flower thinning on quality and quantity of semi-determinate tomato (Lycopersicon esculentum Mill.).” Notulae Scientia Biologicae 4.1 (2012): 108-111.
  • Hurd, R. G., A. P. Gay, and A. C. Mountifield. “The effect of partial flower removal on the relation betwen root, shootand fruti growth in the indeterminate tomato.” Annals of Applied Biology 93.1 (1979): 77-89.
  • Kim, Jin-Gook, et al. “Effects of cluster and flower thinning on yield and fruit quality in highbush’Jersey’blueberry.” Journal of Bio-Environment Control 19.4 (2010): 392-396.
  • Link, H. “Significance of flower and fruit thinning on fruit quality.” Plant growth regulation 31 (2000): 17-26.
  • Michael G Ryan, Ram Oren, Richard H Waring, Fruiting and sink competition, Tree Physiology, Volume 38, Issue 9, September 2018, Pages 1261–1266, https://doi.org/10.1093/treephys/tpy114
  • Rosati, Adolfo, et al. “Fruit production and branching density affect shoot and whole-tree wood to leaf biomass ratio in olive.” Tree Physiology 38.9 (2018): 1278-1285.
  • Scott, D. H., and P. C. Marth. “Effect of blossom removal on growth of newly set strawberry plants.” (1953): 255-6.
  • Solomakhin, Alexey A., and Michael M. Blanke. “Mechanical flower thinning improves the fruit quality of apples.” Journal of the Science of Food and Agriculture 90.5 (2010): 735-741.
  • Williamson, Jeffrey G., and D. Scott NeSmith. “Evaluation of flower bud removal treatments on growth of young blueberry plants.” Hortscience 42.3 (2007): 571-573.

TreM’s You Say?

Trees in forests have many defects such as deadwood, cavities and fungal infections

Arborists are trained in seminars and texts that rot in trees is bad. Wood decay can constitute a “hazardous condition” which when accompanied by the tree being in a place that has a target and the tree is large, can create a “hazardous tree”. The notion of hazardous trees is a uniquely human construct that has little to do with the ecology of trees, the variety of organisms that utilizes large declining trees, and does not consider what the various defects in trees may be contributing to the environment or forest around that tree in terms of organism habitat.  Humans require that trees living near them must perform appropriately otherwise get out the chain saw and make them comply.   In the last decade tree care for birds and  wildlife has become a popular training subject for arborists in the western United States.  In Europe researchers have been popularizing the notion that large trees can become centers of biodiversity because they have many microhabitats that support numerous organisms not found on younger trees.  This concept is abbreviated TreM or Tree related Microhabitat.

Cavities in trees are common TreM’s in mature trees

As trees mature and then decline, they accumulate deadwood, cavities, epiphytic organisms, excrescences, exudates, fungal decay organisms, and even accumulates of soil or pockets of water in branch crotches. Arboriculture practice tends to regard tree defects as having no value, thus we remove dead wood, cut down trees with cavities and condemn trees with wood decay sporophores. It is now accepted that the more “defects” a tree accumulates the quantity and diversity of organisms associated with that individual tree also increases. In this sense old trees become centers of biodiversity within both managed and unmanaged forests.

Decay fungi infect trees but when they produce a sporophore, that is a TreM, as it provides food for athropods, here the Pleasing Fungus Beetle takes a meal.

The health of a forest is not measured only by the quality of the wood it can produce or the number of board feet it can supply, but also by its connections to other organisms that ensure its health over time. Forests are ecosystems and require connections between organisms and diversity of organisms in order to be resilient. These organisms utilize not only living but also dying and declining trees. Ancient trees are often rich in defects and have many TreM’s.

Lichens are epiphytes that utilize tree bark and rocks as a place to grow

Tree injuries such as storm damaged branches, lightning scars, frost cracks, branch failures and and other damage are all considered TreM’s. While these are functional habitat in forests they may be quickly removed from the urban forest even if they do not pose a hazard. Now that they have apparent value, perhaps we can rethink their removal where and when appropriate.

Deadwood is an obvious TreM but so are bark folds, branch architecture, plus soil and water that accumulate in these areas

The TreM concept is derived from trees growing in forests not those in cities. TreM’s may not become a management tool for urban forestry, however there are many lessons to be learned from the TreM concept. The greater the number of microhabitats, the more organisms and connections between organisms there will be. This provides resilience even to urban ecosystems. There is strong evidence that TreM’s serve as a reservoir of organisms in forests helping to maintain their health. Using the TreM concept for non-forest trees will not change how trees are managed for many situations. Risk tolerance often trumps ecosystem services. Greater understanding of TreM’s will perhaps allow us to save trees that do not pose hazards where they would otherwise be disposed of. Some tree managers have tried to create defects in trees to enhance habitat for wildlife. This is not based in science and I do not advocate creating TreM’s for the sake of having them in trees. Fungi and other organisms find their way into trees all too easily. Until we have some science based evidence for the creation of TreM’s, I recommend against it. It’s the whole do no harm thing we have going as plant pathologists. Being aware of TreM’s and evaluating their usefulness in the urban forest is a new area of study.

Trees also create TreM’s under their canopies. Here Ramairia spp. fruits in oak/pine litter

In their field guide, Butler et al., 2020 describe 47 TreM’s that they further break down into 15 groups and 7 types. The field guide is available on line if you want to find out more about TreM’s. The research on TreM’s is nascent, and restricted mainly to Europe and Canada. This fall we will collect data in the Chiricahua Mountains to add to that body of research as part of the South Western Research Station’s Trees Course to be held the last week of September into early October.

References

Butler, R., T. Lachat, F. Krumm, D. Kraus, and L. Larrieu. 2020. Field guide to Tree-related Microhabitats. Descritpions and size limits for their inventory. Birmensdorf, Swiss Federal Insitute for Forest, Snow and Landscape Research WSL. 59 p. www.wsl.ch/fg-trems

Larrieu, L., Paillet, Y., Winter, S., Butler, R., Kraus, D., Krumm, F., Lachat, T., Michel, A.K., Regenery, B., and Vanderkerkhove, K. 2018 Tree related microhabitats in temperate and Mediterranean European forests: a hierarchical typology fr inventory standardization. Ecologial Indicators, 84: 194-207