A Gardener’s Primer to Cold Hardiness, Part 1

Ice crystallizing on the outside of plant tissues is often not damaging (Ralf Dolgner)

With record low temperatures in some parts of the country, gardeners are understandably worried about the ability of their perennial and woody plants to survive the cold. What today’s post will do is give you some context for understanding how plants can survive temperatures far below freezing.

Why ice floats and how this damages cells

Ice weighs less than water, but takes up more space (Wikipedia).

Everyone knows that ice floats, whether it’s an iceberg in the ocean or cubes in your favorite chilled beverage. Ice is lighter than water because its molecular structure is different: there is more space between water molecules in ice. When water freezes naturally, the molecules organize into hexagons, forming a crystalline lattice (which helps explain why snowflakes look the way they do). This hexagonal shape forces water molecules farther away from each other, resulting in a porous material that’s lighter than liquid water.

Hexagonal shapes of of ice crystals (Picryl)

As ice crystals grow, they take up more space than the water did in liquid form. You know this if you have ever left a filled can or bottle in a freezer. The pressure can blow off the lid or split the container – and the same thing happens to animal cells: the membranes are distended until they burst. But plant cells are different: there are cell walls outside the membrane which are rigid and prevent membrane rupture. However, ice crystals are sharp and can lacerate membranes, including those in plant cells.

Frozen bottles of water will either leak or explode (PxHere)

How cold hardy plants avoid freeze damage

Woody plants have evolved a mechanism to survive winters that allows ice formation in certain areas and prevents it in others. This process takes advantage of the fact that plant cells have walls, and that the area between the cells – called the extracellular space – is not alive. Extracellular space is filled with gases and liquids – including water. Water can freeze in these spaces without causing damage because there are no membranes in extracellular spaces, only cell walls. As ice freezes in these “dead” spaces, more liquid water is drawn into them by diffusion from the adjoining cells. There are two outcomes of this: one is that ice only forms in the dead space, not the cells themselves, and two is that the liquid inside the cells becomes more concentrated.

Water that is full of dissolved substances (like sugars and salts) is less able to form ice crystals because there are relatively fewer water molecules in concentrated solutions. We can see this when we add deicers to frozen walkways and roads. The ability of water to stay in liquid form at temperatures below freezing is called supercooling. Plants that are cold hardy are able to tolerate ice formation in dead tissues and avoid ice formation in living tissues by supercooling.

Salt allows water to stay in liquid form at temperatures below freezing (BU News Service)

Supercooling is different than flash freezing

We need to discard any comparison of supercooling to flash freezing, a process used for cryopreservation. Flash freezing rapidly lowers the temperature of the tissue or organism being preserved at rates far faster than what happens in nature. The water molecules don’t arrange themselves in a crystalline lattice as they freeze. Instead they form small crystals in an unstructured form, which don’t take up more space than liquid water. This means that ice doesn’t damage the cells, which are still viable once thawed.

Supercooling allows water to remain in liquid form at temperatures below freezing…but eventually everything freezes (Wikimedia)

Supercooling is a process that occurs under natural conditions, which usually mean slow decreases in temperature. This allows water to continue to move out of the cells into the extracellular space where it freezes. (There are exceptions to this naturally slow rate, and I’ll discuss those in a follow up post.)

There is a limit to supercooling

Unfortunately for plants (and gardeners) there are limits to supercooling. These limits vary with species but even the most cold hardy plants will eventually experience injury and death. The reason this happens, however, isn’t from the freezing itself, but from drought stress. Let’s look at what’s happening inside the cells during supercooling.

A schematic diagram of plant cell plasmodesmata (Wikimedia)

As water continues to diffuse into the extracellular spaces, the cell becomes less turgid; this is called freeze-induced dehydration. Without water forcing the cell membranes against the walls, the membranes start to pull away as water is lost. Eventually the membranes and plasmodesmata (which connect living cells to one another) are stretched and break. These cells are now dead – they are isolated from the rest of the plant and the torn membranes allow liquid to seep out. So cells, tissues, and entire plants that die from low temperature stress are usually killed by drought stress!

And a photomicrograph of plasmodesmata connecting plant cells (Wikimedia)

In my follow up post, I’ll discuss the practical significance of this phenomenon, including rapid temperature changes in natural and the influence of wind. And, of course, some suggestions on how to help plants survive these stressful conditions.

Published by

Linda Chalker-Scott

Dr. Linda Chalker-Scott has a Ph.D. in Horticulture from Oregon State University and is an ISA certified arborist and an ASCA consulting arborist. She is WSU’s Extension Urban Horticulturist and an Associate Professor in the Department of Horticulture, and holds two affiliate associate professor positions at University of Washington. She conducts research in applied plant and soil sciences, publishing the results in scientific articles and university Extension fact sheets. Linda also is the award-winning author of five books: the horticultural myth-busting The Informed Gardener (2008) and The Informed Gardener Blooms Again (2010) from the University of Washington Press and Sustainable Landscapes and Gardens: Good Science – Practical Application (2009) from GFG Publishing, Inc., and How Plants Work: The Science Behind the Amazing Things Plants Do from Timber Press (2015). Her latest effort is an update of Art Kruckeberg’s Gardening with Native Plants of the Pacific Northwest from UW Press (2019). In 2018 Linda was featured in a video series – The Science of Gardening – produced by The Great Courses. She also is one of the Garden Professors – a group of academic colleagues who educate and entertain through their blog and Facebook pages. Linda’s contribution to gardeners was recognized in 2017 by the Association for Garden Communicators as the first recipient of their Cynthia Westcott Scientific Writing Award. "The Garden Professors" Facebook page - www.facebook.com/TheGardenProfessors "The Garden Professors" Facebook group - www.facebook.com/groups/GardenProfessors Books: http://www.sustainablelandscapesandgardens.com

6 thoughts on “A Gardener’s Primer to Cold Hardiness, Part 1”

  1. Not to put any pressure on you, Linda, those ” suggestions on how to help plants survive these stressful conditions” would be very useful right now while we and our precious plants are in the grips of very cold temperatures.

    1. Right now use anything you can to block wind (chicken wire cage, filled with leaves and covered in burlap around plants, for instance) to reduce dehydration, and mulch, mulch, mulch. Bunch containers together against the leeward side of the house and insulate if you can’t store them in a garage or shed. If soils are dry make sure you add some water.

  2. First, I thank you for your reply to my comment above.

    Now, I have a question not related to this article which I would ask on the Facebook blog – except that I am not on Facebook. It has to do with the advisability of applying ‘cremains’ to gardens. An acquaintance is involved with setting up a pet cemetery where pets’ ashes would be scattered over a garden and she wonders what could be planted in such a garden. So far, I have found a number of contradictory articles and would like more authoritative information and advice.

    Sorry for intruding on this post with an off-topic question.

    1. Using the ashes of any organisms has one drawback: it is a concentrated level of elements going into the soil. It’s best to scatter these diffusely to keep from overloading the soil. A soil test should be done first to determine whether you already have nutrient overloads, particularly phosphate and heavy metals.

Leave a Reply