Fertilizer—Friend or Foe to disease causing organisms?

Gardeners that read this blog understand that minerals are absorbed mostly by plant roots as ions, and are essential for plant growth and development. Some minerals are required in parts per hundred, and are macro-nutrients while others are only required in parts per million or parts per billion, and are considered micronutrients. As long as enough of the 16 most essential minerals are available, plants grow and reproduce in a healthful way. When not enough of one of the essential elements are available, a deficiency occurs, and plants

Nutrient deficiency symptoms in new growth of Camphor tree

may present deficiency symptoms. Mineral nutrient deficiency symptoms are considered abiotic disorders. There are, however, cases where excess or deficiency of elements can be predisposing to disease caused by pathogens. Most some mineral elements do have a role in the development of disease caused by some pathogens but this is largely demonstrated in agriculture and often most home gardens do not suffer nutrient caused plant diseases.
Diseases can be either biotic with a living pathogen driving the disease or abiotic where a physiological condition is caused by the environment and host interactions. Mineral nutrients also are often implicated in abiotic disease.

 

Blossom end rot in tomato fruit

Perhaps the most famous one is blossom end rot of tomato. This disorder is seen by gardeners around the country and is widely attributed to calcium deficiency. Expanding fruit are a tremendous “sink” for nutrients like calcium and it was thought that if not enough calcium was available in soil the disorder would occur. It is accepted that localized Ca deficiency (in fruit) may play a role in the initiation of blossom end rot, but there are many other factors that lead to the full blown condition, some of which are not fully understood. The fact that blossom end rot (BER) occurs in calcic soils in California underpins the complexity of this disorder.  In many cases, simply adding calcium to soils does not correct the problem. Research in California suggest that the plant hormone abscisic acid (ABA) regulates water flow, the development of water conducting tissues, and calcium uptake in tomato. Researchers found that ABA treated tomatoes were cured of blossom end rot.  For gardeners, making sure plants are fertilized, and avoiding varieties susceptible to BER is the best course of action.

Soil-borne pathogens are perhaps most affected by minerals dissolved in soil solution. Minerals can act in specific ways (specific ion effects) or as total ion effects (osmotic strength or concentration) having direct impact on pathogenic propagules or on the host itself. In a biological disease relationship there are several possibilities:
• Specific ions harm or favor the pathogen.
• Specific ions harm or support the host.
• Ionic strength changes the root environment making the host weak and susceptible.
• Ions change the pH of the soil solution making it more or less fit for a pathogen or the host.
• Ions change the soil physical environment making it more or less fit for a pathogen or the host.

Root rot of annual color plant is a common find in many garden centers

While it is often espoused that the well “fed” or fertilized plant is resistant to disease, it is rarely borne out in published research on ornamental plants. Keeping a good nutritional level in nursery stock will not necessarily protect plants from many of the virulent pathogens that are capable of causing disease. Excess fertilization may lead to luxury consumption by the fertilized plant and can produce succulent growth that will exacerbate of such diseases as powdery mildew. It is well known that seedling diseases caused (damping off) are more severe with increased medium salinity and it was later discovered that increased soil salinity also increases susceptibility of ornamental plants to Phytophthora root rot diseases. Phytophthora is the most common pathogen associated with rotted roots in most gardens.

Plant mineral nutrition supports plant health in two basic ways (1) formation of mechanical barriers (cell wall strengthening) and (2) synthesis of defense compounds that protect against pathogens. The role of specific elements and their compounds is complicated and unique to each disease/host system. Certainly deficiencies of molecules such as calcium and potassium can interrupt either defense mechanism and if nutrients are supplied enough to prevent deficiencies there is little role of nutrients in preventing disease.
Root rot is a disease of thousands of ornamental plants and a serious problem in many gardens. Root rots caused by Phytophthora spp. occur in a range of nutritional and pH ranges. Nitrogen has been shown to lessen root rots and this is likely due to conversion of nitrogen into ammonia gas in soil which acts as a fumigant. Many studies found no relationship of nitrogen source to root rot disease development.  Calcium increases disease resistance to root rot in avocado and other plants. While it is understood that calcium has direct effects on plant membranes, root cell membrane leakage, cell wall thickness, and many other host factors, there are also direct effects on the pathogen in soil. Calcium ions reduce the production of disease spores and disrupt their ability to swim and find susceptible roots. When soils and soil less media are low in soluble calcium, when calcium is easily precipitated out of solution, or when the pH is high and limestone minerals decrease the availability of calcium, root rots will be able to infect.  Increases of sodium ions in soils and soil less media can also increase Phytophthora caused diseases.

Some non-essential elements have become popular as disease suppressants. Research has shown Silicon increases resistance of plants to powdery mildew, root rots and to stress in general. Silicon is implicated in strengthening cell walls as well as in defense protein production in plants. But not all plants are capable of utilizing silicon, so its role in plant defense is limited to those species (mostly grasses) capable of metabolizing it. Silicon has been erroneously recommended for widespread disease prevention. Its actual utility is likely very narrow. Much more study is necessary to understand silicon’s role with ornamental plant-pathogen systems. Gardeners will find little use for silicon as a disease prevention too.

Plants extract minerals from container media and garden soils—the process is complicated; it is mediated by the substrate/soil, water chemistry, temperature and the applied minerals (fertilizers) as well as by plants. Gardeners should apply fertilizers that can supply a constant low level nutrient charge or rely on nutrients provided in mulches. Fertilizing decisions are best guided by having a low cost soil analysis by a University lab. Supplying extra soluble calcium may be helpful in managing root rots, especially where heavy rainfall is normal and soils may be highly leached. Preventing salt build up (by leaching irrigation) in high salinity soils (low rainfall places) and that can occur when media dries out, will also help plants avoid infection by root rot organisms. It is good to remember that fertilizers never cure diseases, but there may be a role in preventing disease when plants are nutrient deficient.
References
Baker K.F. 1957.  The UC System Producing Healthy Container-Grown Plants. University of California Division of Agricultural Sciences Agricultural Experiment Station Publication #23.

Cherif M., Asselin A., Belanger R.R. 1994. Defense responses induced by soluble silicon in cucumber roots infected by Pythium spp. Phytopathology 84:236-242.

Datnoff, L.E., Elmer, W.H. and D. M. Huber eds. 2007. Mineral nutrition and plant disease. APS Press The American Phytopathological Society, St. Paul, MN. 278pp.

Downer A.J., Hodel D.R., Matthews D.M., Pittenger D.R. 2013. Effect of fertilizer nitrogen source on susceptibility of five species of field grown palms to Fusarium oxysporum f. sp. canariensis. Palms 57: 89-92.

Duvenhage J.A., Kotze J.M. 1991. The influence of calcium on saprophytic growth and pathogenicity of Phytopthora cinnamomi and on resistance of avocado to root rot. South African Avocado Growers Yearbook 14:13-14.

Faufeux F., Remus-Borei W., Menzies J.G., Belanger R.R. 2006. Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiology Letters 249:1-6.

Kauss H., Seehaus K., Franke R., Gilbert S., Dietrich R.A., Kroger N.. 2003. Silica deposition by a strongly cationic proline-rich protein from systemically resistant cucumber plants. Plant J. 33:87-95.

Lee B.S., Zentmeyer GA. 1982. Influence of calcium nitrate and ammonium sulfate on Phytophthora root rot of Persea indica. Phytopathology 72:1558-1564.

Ma, J.F.  2011. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Science and Plant Nutrition 50:11-18.

Macdonald J.D., Swiecki T.J., Blaker N.S., Shapiro J.D. 1984. Effects of salinity stress on the development of Phytophthora root rots. Cal Ag 38:23-24.

Messenger B.J., Menge J.A., Pond E. 2000. Effects of gypsum on zoospores and sporangia of Phytopthora cinnamomi. Plant Dis 84:617-621.

Powell C.W., Lindquist R.K. 1997. Ball Pest and Disease Manual (2nd ed). Ball Publishing Batavia Publishing. 426 pp.

Span T.M., Schumann A.W.  2010.  Mineral nutrition contributes to plant disease and pest resistance. University of Florida Publication #HS1181. http://edis.ifas.ufl.edu.

Tonetto de Freitas, S., K.A. Shackel and E. J. Mitcham. 2011. Abscisic acid triggers whole-plant and fruit specific mechanisms to increase fruit calcium uptake and prevent blossom end rot development in tomato fruit. J. of Experimental Botany 62:2645-2656.

Daylor, M.D. and S. J. Locassio. 2004. Blossom-end rot: A calcium deficiency. J. of plant Nutrition 27: 123-139.

Zentmeyer G.A. 1963. Biological control of Phytophthora root rot of avocado with alfalfa meal. Phytopathology 53:1383-1387.

Hydroponics, Aquaponics, & Aeroponics, Part Deux

Last month I shared some basic info on the major techniques for growing plants without soil, namely hydroponics, aquaponics, and aeroponics.  With such interest in these topics, I thought it would be good to dive a little further into the technologies used.  I’ll provide a bit of basic information about each type of system used for production and provide some resources for further technical reading if you’re interested in learning more. For some simple diagrams of the systems, check out this link (we don’t know if we can “borrow” the images, so we didn’t copy them over).

DEEP WATER

“Deep” water may be a bit of a misnomer, as it usually brings to mind thoughts of mysterious sea creatures living in the dark depths of the ocean.  Technically, the “deep” water can be just a few inches, as it is deep in reference to other methods.  This is perhaps the simplest and least expensive of the systems and can be a great entry point for beginners.

For deep water culture, the nutrient solution is held in a large container with some sort of floating support holding the plants.  The container is at least a few inches deep and holds a relatively high volume of water.  There are some containers that are designed for deep water hydroponics, but repurposed containers will work as long as they are food safe (meaning that they do not leach or break down).  Large plastic totes or even plastic buckets can be used.  As for supporting structures for plants, Styrofoam is the most common.  There are cell trays made of Styrofoam that are commonly used in production of small crops (or for growing transplants, which is a common use of this technique).  Foam boards with holes to hold pots can also be used.  Back when I was in grad school we developed hydroponic systems in my plant propagation class using foam insulation boards floating in large plastic totes.

One thing that you have to keep in mind for deep water culture is the need to incorporate oxygen into the system.  We often talk about the issue of overwatering houseplants and how it can damage roots  due to hypoxic, or low oxygen, situations.  Imagine how roots growing only in water would create situations for poor root and plant growth.  In all the other systems water flow helps incorporate oxygen into the water.  In deep water, there is no moving water and therefore no air incorporation.  The most common tool used for this, especially for small systems, is an aquarium air pump and air stones that help create bubbles in the system.

One benefit of this system is that it has a low level of risk when it comes to system failure.  There are few moving parts to break down and loss of electric doesn’t result in roots drying out due to loss of water flow.

EBB & FLOW

Ebb and Flow troughs in an aquaponics system. Note the floating styrofoam rafts. (I did research in this system during my master’s program.)

These systems, also called flood and drain systems, are one step of complexity above the deep water systems by introducing water flow.  Plants can either float as in deep water culture or be held in media that fills the container.  While many containers can be used, the most common are longer channels that promote water flow from one end to the other.  This system also introduces a reservoir of some sort that holds excess nutrient solution and a pump to deliver it to the container.  The level of water in the container is controlled by a raised drain pipe where solution exits the system back to the reservoir.

The DIY system I build using gutter with the Rwandan students (mentioned in the first installment on hydroponics) is ebb and flow.  The drain from the gutters is a few inches high within the channel, so the water raises those few inches before it drains out.  Some producers use long channels the width of those floating cell trays to grow plants in a relay fashion, planting them on one end and move them along as new rafts are added until they are harvested on the other end.

This system is common not only in hydroponics, but aquaponics as well.  Instead of a nutrient solution reservoir, the water from the tank(s) holding the aquatic stock (commonly fish, but could also be crustaceans like shrimp) is pumped into the plant channels and flows back into the system.  Systems may be based on continuous flow into and out of the system, but most commonly a timer is used to have multiple periods of flow and rest mainly as a means to reduce power usage.

NUTRIENT FILM TECHNIQUE (NFT)

This system evolved one more step above ebb and flow by limiting the volume of water used in the system.  Here, water is pumped from the solution reservoir to shallow channels where plants are held in pots or blocks of inert media such as rockwool.  Roots are not submerged in water, but instead grow within a thin film of solution that flows almost continuously through the system.  These channels have a slight slope where the end with the drain is a little bit lower than the end where the water enters.  The slope can be adjusted slightly to affect the speed of the water through the system.

This system is becoming common in production of leafy greens and herbs because it uses a much smaller volume of water.  But that small volume of water also presents a risk.  If there is a power failure or a clog in the tubing that delivers water to the system the roots can very quickly dry out and crops die, especially in situations of high heat and light.

DRIP SYSTEMS

Dutch bucket method for trellised crops

Perhaps one of the most commonly used systems across the world due to their simplicity, drip systems could be compared to a drip irrigation system used in the field.  Drip emitters are used to supply nutrient solution to plants in containers containing an inert media such as peat, coir, perlite, or grow stones. The containers can be pots, buckets, or bags/blocks of the media and are most commonly placed on the floor of the greenhouse or growing location with gutters to collect the solution that flows through the containers. A common method is using long, narrow bags filled with coir or other media referred to as the slab method.  Another common method, called the Dutch bucket method, uses buckets with drain holes in the bottom, commonly placed on a greenhouse floor.  Water trickles down through the media and roots and leaves the system through the bottom of the container.

Systems vary in the collection of the used solution.  Some may collect the solution that flows into the gutter and collect it in a reservoir to be reused, however some systems may allow the solution to flow out as waste.  These differences depend on the needs of the producer, available resources, and local regulations.

One of the comments that we got on my first article was about people growing container plants could technically consider it a form of hydroponics.  That might be a bit of a stretch, but you could technically consider growing container plants in soil-less media as drip or flow through hydroponics if you provide all of the nutrients through soluble fertilizers in the water.

WICK SYSTEMS

Typically used for small scale production, wick systems are one of the simple ways to grow plants without soil in terms of technology.  In this system, a passive wick uptakes nutrient solution from a reservoir and pulls it into the media (usually absorbent itself).  This wick could be a true wick, like a string made of absorbent material that inserts into an individual pot or it could be a mat made of absorbent material that pots or trays sit atop.

I’ve seen this commonly used perhaps not strictly in hydroponics, but for watering individual plants like African violets where yarn or twine is inserted into a drain hole in the pot and sits in water.  Technically this could be hydroponics if the media doesn’t contribute nutrients to the plant and they are all contained in the water instead.

KRATKY METHOD

This is probably the simplest of the methods and is used primarily by small scale producers and home growers.  It is similar to the deep water method in that there is no flowing water, but it is even simpler because there isn’t even an air bubbler.  In this method, plants are grown in large containers or buckets and the structure that supports them is fixed to the top of the container rather than floating.  As the growing solution is used up, the level of solution in the container decreases.  This creates a zone where the roots are exposed to air, providing the oxygen that the roots need.  The solution is kept at a level where at least the bottom portion of the roots are submerged in the nutrient solution.

AEROPONICS

Probably the most complex or technical system, aeroponics supplies water and nutrients to plants through a mist or aerosol emitted through pressurized nozzles.  The roots hang in a chamber without media and are misted every few minutes with nutrient solution.  The excess solution drops to the bottom of the chamber and is reused.  This system uses very small amounts of water, which can be beneficial for growing in dry areas but also creates a potential risk if the system or power fails.  Just like the NFT system, any prolonged period with out water will quickly result in plant damage or loss.  Beside power loss, this systems is also prone to clogged emitters, since the pressurized nozzles rely on very tiny openings to pressurized the solution.

Keep in mind that several systems that are sold for home or small scale production that are labeled as aeroponic, such as AeroGarden and Tower Gardens, don’t technically use aeroponics to grow since the solution isn’t applied as a mist or aerosol.  I would say they operate more like a vertical NFT system where water flows over the roots as it travels down the chamber.

RESOURCES

Hydroponic Greenhouse Production Resources – UMass Extension

Introduction to Hydroponics – Johnny’s Seed

All You Need to Know to Choose a Hydroponic System – Upstart Farmers

How to Start Growing with the Kratky Method – Upstart Farmers