The worms crawl in and the worms crawl out but these worms kill your plants

Our first major frost hit my part of Arizona a month ago, killing all tomato vines. I did my thanksgiving cleanup chores–removed all the vines and ground them into mulch. I noticed an ominous symptom on one a few of the heirloom varieties (Prudence Purple) that I removed—galled roots. This symptom when seen on tomato is evidence of Root Knot Nematode (RKN). More about RKN shortly. Nematodes are non-segmented worms, mostly free living in soil and feed on bacteria, fungi, small animals or each other. Nematodes are small, barely perceived without magnification but easily observed under low power microscopy. Most nematodes are principal components of the soil food web and are vital to its health and functioning. A few kinds (>30) are opportunistic plant feeders. Plant pathologists consider nematodes plant pathogens because they evoke complicated responses in plant physiology leading to the development of symptoms.

Root knot nematode (Meloidogyne spp.) forms extensive galls on Prudence Purple tomato by the end of a growing season.

Plant parasitic nematodes have some common features and some rather diverse feeding habits and lifestyles. All plant parasitic nematodes have a stylet or spear at their mouth end that is used to puncture plant tissues and such the sap from their host. Looking under a dissecting microscope you may not be able to identify the genus of a nematode but you can tell if it is bad for plants by seeing the spear just behind its mouth. Plant Parasitic Nematodes (PPN) are either migratory or sedentary. All PPN reproduce by eggs and molt once inside the egg emerging as a second instar juvenile nematode. After a couple more molts the juveniles become adults. Male nematodes are less common than female worms. As adults they can keep feeding from plant to plant if they are ectoparasitic (feeding outside of the root) or they can settle down and make eggs inside a cyst or gall. Some nematodes are endoparasitic and once inside the root never leave it until their eggs hatch and juveniles swim off find another host.

Even though these marigolds are heavily galled by root rot nematode their only above ground symptoms are dwarfing or slowed growth

Gardeners should be on the lookout for PPN by noticing symptoms of infection. The most common symptom caused by nematodes is stunting or reduced growth. There may be no other symptoms observable. When the number of PPN is quite large, yellowing or chlorosis can occur as the worms shut down a plant’s ability to take up water and minerals. RKN is the most common destructive plant parasitic nematodes for many gardeners. The gall symptoms on roots are indicative of an infested host. Galling can be light or complete, occurring on every root the plant has. RKN survives in soil for years even without a host because the eggs enter a dormant stage called cryptobiosis. Hatch is snychronous with susceptible roots that grow nearby. Root knot nematodes can build huge populations in a single growing season. Gardeners get nematodes by introducing contaminated soils that come with plants to their gardens. Since symptoms don’t show on plants with minor infections, people think they are buying healthy stock. Even with RKN, there may be juveniles in the soil that have not formed galls yet and when introduced to your garden they will develop later on susceptible plants.

RKN has a very wide host range. Fruit trees, impatiens, calendulas, and tomatoes are a few of its common hosts. Perennial plants can really develop high populations of RKN because the host is undisturbed and provides many seasons for the pathogen to develop. Once detected as galls on roots the plant should be removed and destroyed. RKN is particularly horrible for tomatoes and other annuals when it combines with fungi that also cause disease. RKN forms disease complexes with Fusarium which causes wilts. When tomatoes are infected with both RKN and Fusarium the symptoms are severe, and the plant will die relatively early in its life cycle often before a crop can develop.

Chipping or grinding and composting will kill most nematodes if you want to reuse your greenwaste. More likely RKN will survive as eggs in the soil. Soil samples that find just one RKN per gram of soil sample are considered hazardous as the worms can rapidly develop from these low populations. You may have heard that Marigolds will control RKN. Switching gardens to a non-host (crop rotation) does help decrease populations. And French marigolds and crucifers if tilled into soil as “green manure” will decrease RKN but these methods will not eliminate them from soil. There is a dose response to tilling in mustards so the more you incorporate the more RKN will be harmed. Some varieties are better than others. Fumigation provides a good level of control but is not feasible outside commercial agriculture. Soil solaraization with plastic tarps also controls nematodes in the upper regions of soil but there are usually many eggs that survive in lower soil profiles. The best control is not to plant susceptible plants.

Some tomato varieties are resistant to RKN. In fact VFN (Verticillium Fusarium and Nematode resistant) varieties should be chosen to avoid recurrent problems. The resistance to RKN in tomato is not complete and under high nematode populations and/or high temperatures the resistance can break down and even resistant varieties can develop galls and symptoms. There are no pesticides that home gardeners can use to kill nematodes. However there are biological controls of nematodes and since they are soil food web opportunists, increasing the diversity of organisms in soil tends to cut down on PPN. As always, fresh arborist chips applied as mulch will build a resilient soil food web and will slow the development of PPN harmful to garden plants.

Hydroponics for the Holidays? Home Systems are a hot holiday gift list item

Systems to grow fresh produce in your home using hydroponics or other automatic processes have been popular for several years but seem to be even more popular this year with more folks home and looking for something to do and hoping to produce their own food.  As a result, these systems are popping up on holiday wish lists and gift buying guides all over the internet.  But are they worth it?  And if so, what should you look for in a system? 

First off, what are these systems? And what is hydroponics?  Hydroponics is the process of growing plants without soil in a aqueous nutrient solution.  Basically, you provide all the nutritional needs of the plants through nutrient fertilizers dissolved in water.  These systems can grow plants faster and in a smaller space than traditional soil-based production. It also allows you to grow plants indoors and in areas where you would not normally be able to grow.

This Aerogarden (which is the previous generation) has a digital brain that controls light and water schedules for the specific growth phase of the plant and yells at you when it thinks you need to add more fertilizer solution.

As for systems, you might have seen what is probably the “oldest” one on the market – the AeroGarden.  Since it is the oldest and most common, that’s the example we’ll be staying with.  It has been around a few decades and has evolved from a basic electronic system to fully automatic, “smart”Bluetooth connected systems that you can control with your phone.  In recent years there have been many new systems come onto the market at all different sizes and price points.  A quick search of online retailers will usually provide an array of options – from DIY kits to plug-and-play enclosed systems such as “Click & Grow” and “Gardyn”. My only experience is with the Aerogarden system, so I can’t speak to any of the others (though I’d love to try them out!).

The answer to “are they worth it” is up to you, really.  Most home based hydroponic or aeroponic systems offer convenience, but at a cost.  Most cost several hundred dollars and are small, so they produce a small amount of produce (or other plants) at any one time. So you have to determine what goals you, or your intended giftee, have with the system. 

“Baby” lettuce, 18 days after sowing. The current version of this 9-plant Aerogarden system, called the “Bounty”, retails for $300 but you can usually get it for under $200 on sale.

The benefit of the “plug-and-play” enclosed systems like the AeroGarden is that basically you can take it out of the box, set it up in less than 10 minutes, and have some fresh lettuce or herbs in a few weeks.  It controls the water cycles, lighting, and all other conditions for growth.  You just drop in pods that contain the seeds suspended in a spongy-material.  The smallest system, that holds 3 plants, retails for $100.  As an additional expense comes from buying refill kits to replant. The mid-size systems are the most common and range from $150-$300.  The largest system, the “XL Farm” retails for $600. But these systems are commonly on sale at pretty significant discounts. 

For many systems, you typically buy a new set of pods (there are different plant variety selections), but there are pods you can buy to assemble your own using your own seeds.  For the AeroGarden, the pod kits range from $15 up to $30 to grow up to 9 individual plants. There are other plug-and-play systems on the market, as well as some kits that are more build-your-own and less automated. 

No matter which systems you buy (or gift), keeping these costs in mind is important.  If you’re looking for a fun and easy activity with the benefit of a little fresh produce and aren’t as concerned with production costs these systems may be for you – and if you are giving or getting them as a gift that definitely makes it more economical. But given the cost of the plug-and-play systems and the refill pods, they will never be an “economical” option for producing your own food.  If you are wanting to produce food on a budget and you’re interested in home hydroponics, look for plans to build your own or buy a DIY kit. 

The complicated issue of heavy metals in residential soils, part 1: What are toxic heavy metals, and where do they come from?

The popularity of home gardens is exploding as we wait out the COVID pandemic

So many of us are growing our own vegetables – either as experienced home gardeners or as COVID19-isolated novices. There is a lot of effort in figuring out garden beds, vegetable choices, and growing medium – but one of the issues rarely considered is whether there are heavy metals present in the local soil and/or growing medium. We can’t see heavy metals, or smell them, so we need to have a way of assessing their presence before we plant edibles.

In the next few months, I’ll tackle the complicated science behind this invisible threat. Today, let’s look at the heavy metals that are commonly found in garden soils and where they might come from.

What heavy metals do gardeners need to monitor in their soils?

Heavy metals are exactly that – they are dense elements that have certain chemical properties that define them as metals. In fact, most known elements are considered to be heavy metals. Fortunately, there are only a handful of heavy metals that are commonly found in residential soils. Some of these heavy metals are necessary for life – iron, manganese, and zinc, for example – but others have no known biological function. Arsenic and lead, for instance, can interfere with enzymatic activity and effectively poison biochemical pathways. There is no “safe” level of heavy metals that are not essential nutrients.

Here’s a table of the most common toxic heavy metals that might be found in your soil, and possible anthropogenic sources:

Heavy metal Sources of contamination
Aluminum* Smelting
Arsenic Pesticides, smelting, treated timbers (old)
Cadmium Paint
Chromium Fly ash, metals industry, paint, leather tanning, treated timbers (old)
Lead Gasoline (leaded), paint, pesticides, plumbing, smelting, solder
Nickel Plumbing, smelting

*Aluminum is a light metal, not a heavy metal, but has similar biochemical poisoning activity as toxic heavy metals

Some of these sources of contamination are not relevant to where I live – why do I need to test my soil?

Gardeners may be tempted to look at the chart above and feel relieved, because pesticides and paint no longer contain heavy metals, they don’t use old treated timbers, and they know that leaded gasoline is a thing of the past. What many don’t consider, however, is that heavy metals are elemental – they don’t break down, though they may change their chemical form. They are a permanent part of soil chemistry unless they are removed by physical or biological means.

The underlying soil in housing developments built on old agricultural land often contains high levels of arsenic – because that was the active ingredient in pesticides many decades ago. If the topsoil was removed during construction, it may have been taken to a commercial soil facility where it would have been used to create landscape fill mixes for new landscapes elsewhere. The same is true for land near older roadways where lead from gasoline was released from vehicles over many decades. Not only are lead, arsenic, and other heavy metals in the soil, they also end up in the air when soil is disturbed by erosion or tilling.

Nearly all soils contain some level of some heavy metals. They are naturally occurring, after all, so their presence is not necessarily from anthropogenic activities. Regardless of the source, it’s important to know whether any of these harmful elements are in your garden soils, especially if you are growing edibles. A soil test is the only way to find out.

Here is a soil test of my own raised bed system. While my nutrient levels are optimum, and lead is very low, the aluminum level is quite high. What should I do?

Why aren’t there guidelines on heavy metal uptake in vegetable gardens?

It would be ideal if there was a list of “safe” and “dangerous” vegetables to plant when heavy metals are present. Unfortunately, real life rarely fits into lists and there are numerous sources of variability. Next month I’ll discuss the complications that arise when we consider plant species, heavy metals, and environmental variables.