Rain barrels

A few weeks ago one of our readers, landscape architect Owen Dell, sent me a link to his blog where he takes on rain barrels. It’s a great analysis of the (im)practicalities of rain barrels and it got me to wondering how many of our readers (and my GP colleagues) use these as supplemental sources of irrigation water?

I have two in our back yard that were made from old olive oil containers retrofitted for collecting and dispensing water. They’re hooked together so that when one fills, the rain is diverted to the second.

We use this water pretty much for watering container plants, especially those on our south-facing front porch that require watering every other day during the summer. The barrels each hold 55 gallons and are always full during the winter and spring. We drain them almost dry over the summer, but even a brief rain results in several gallons collected.

So I think they’re a pretty good deal, since we use relatively little water from the hose to keep our container plants happy. But Owen brings up some valid points in his analysis, as do commenters on his blog.

What do you all think?

Keep Calm and Carry On: Part II

Recently I posted that many of the “rules” that gardeners cling to so tightly regarding tree planting (i.e., dig the planting hole 3 times the width of the root ball, always amend the backfill with organic matter) are probably better considered ‘suggestions’ than rules.  While these practices won’t hurt, there are much better ways to spend time and effort to ensure long-term survival when planting a tree.  Here are the top four:

Irrigate.  No matter how much time and effort goes into the ‘perfect’ planting hole; for most parts of the country, trees that are not irrigated after planting are doomed.  Linda advocates watering in several small sips during the week; I still stick to the old school notion of one long soak per week.  In the final analysis, logistics will probably dictate which approach you use.  Either way, the key is to provide trees with water during the establishment year and even into the second year after planting, if possible.

Mulch.  Organic matter placed properly on top of the planting hole will do more good than organic matter placed in the planting hole.  Study after study demonstrates that mulch conserves soil moisture by reducing evaporation from the soil surface, controls weeds, and moderates soil temperature.  Oh, and that business about wood-based mulches ‘tying up’ or ‘stealing’ nutrients from landscape plants?  Maybe for bedding plants, but not for trees and shrubs.  Our research and other studies indicate that, for the most part, the type of organic mulch makes little difference compared to not mulching at all.  Hence, my motto “Mulch: Just do it.”

Proper planting depth.  Width of the planting hole may not matter, but planting trees too deep is a recipe for disaster.  Burying roots too deep reduces oxygen levels around the roots and starts a series of unfortunate events for the tree.   Find the root collar flare and keep it visible.

Bad move.  The contractor was going to install drain tile but decided not to at the last minute to save money. Ouch.

Right tree, right place. In my experience, the number one reason newly-planted trees fail in the first year is lack of watering and aftercare.  After year one, improper tree selection takes the top spot.  Here in the Upper Midwest, poor drainage and heavy soils take their toll year after year.  Lack of water can usually be addressed, but once a tree is planted in a spot that is too wet for that species, it’s usually a long, slow, and agonizing decline.  And it’s amazing how often people will ignore obvious red flags in selecting trees.  Our Dept. of Transportation recently planted 25 eight-foot B&B eastern white pine, which are notoriously salt sensitive, about 30’ from I-96 at a rest area between Lansing and Detroit.  Predictably, after one winter’s exposure to deicing salt spray all the trees were dead or wishing they were dead.  Right tree, right place.  This ain’t rocket science, folks.

Good to the last drop

As part of our discussion of the relative merits of fall planting, Linda mentioned an article in Arboriculture and Urban Forestry that suggests that frequent, light irrigation might be better for landscape trees then the usual recommendation of infrequent soakings.  While I will withhold final judgment until I see the article (I did a scan of the last two year’s table of contents for A&UF but missed the article in question), here’s my rational for following the standard recommendation.

 

First, the context.  In discussing landscape tree irrigation I am talking about watering trees during establishment, typically during the first year after planting and maybe the second if the tree is lucky.  The goal of watering in this case is ensuring survival.  The questions are whether deep soakings are more likely to encourage deeper rooting where water availability is less variable than near the surface after irrigation ceases and whether infrequent watering increases drought tolerance over more frequent irrigation.

 

Roots follow resources
As my Woody Plant Phys students quickly learn, we avoid the teleological ‘roots seek out water’; nevertheless, roots do proliferate where resources are available.  A couple of illustrations.  As a Tree Physiology Project Leader with International Paper I supervised a 25 acre hardwood fertigation trial.   Trees were watered daily via drip irrigation system with emitters spaced every 3’ down a row.  As part of the study we did periodic root harvests.  My technicians quickly learned it was an easy job: just look for the drip emitters – every three feet there was a mop of roots right next to the drippers.  The notion of roots following resources is also widely reported in the ecology literature on tree utilization of ‘patchy resources’ (e.g. Gloser et al. 2008 Tree Phys 28:37-44 ).  Other factors being equal deeper watering should result in deeper rooting.

 

Trees habituate to frequent irrigation
Another short rotation forestry example.  In eastern Washington and Oregon forestry companies Potlatch and Boise Cascade operated intensively managed ‘fiber farms’ which grew 70’ tall, 7” diameter hybrid poplars on a 7 year rotation.  To maintain these growth rates, trees were irrigated daily.  But there was a downside: If one day’s irrigation was missed the leaders to the trees would start to wilt.  Three days without water would result in leaf drop. The daily irrigation was great for growth but it turned the trees into physiological wusses.

 

Periodic water stress improves drought tolerance and survival
A common adaptation for trees to tolerate drought is osmotic adjustment, which is an active accumulation of solutes that enables plant cells to maintain turgor pressure during dehydration.  Plants that have acclimated to stress via osmotic adjustments and other physiological adjustments are able to survive better during prolonged drought than plants that have not been pre-conditioned.  For example ponderosa pine seedlings that had been subjected to brief drought events survived a terminal dry-down two weeks longer than seedlings that had been watered 3 times a week before the final dry-down (Cregg 1994 Tree Phys. 14:883-898.

 

What would it take to change my mind?
Obviously some of my examples here are anecdotal (though there’s plenty of hard data on osmotic adjustment and other drought conditioning effects on trees).  To recommend frequent (2 or 3 times a week), shallow irrigation I would need to see: a well designed and executed experiment that compared frequent irrigation to periodic (once every 7-10 days) applying the same amount of water weekly (0.5 to 1” per week) for the first year and then documented improved survival of the trees after irrigation had been discontinued.  I’m not saying it’s not possible but it goes against my personal observations with irrigated trees in a variety of settings and relevant data with which I’m familiar.

Killing with Kindness

With the advent of Spring comes a myriad of calls on distressed plants from homeowners, nurseries and landscapers.  One of our better tree service companies (I’ll call the owner/operator ‘Mark’ to protect his clients’ identities) in southeastern Michigan called with a series of problems this spring so I decided to take drive over and get a first hand look. We looked at several problems on plants ranging from trees to ground covers but there soon emerged an consistent thread: overwatering.  Plant problems related to overwatering and poor soil drainage are among the most common landscape issues I see year in and year out.  The stops I made with Mark last week were typical. Mark works in several very affluent suburbs around Detroit (I know readers around the country don’t associate Detroit and affluence, given our recent press, but there is still some serious money in the area).  Some of Mark’s clients spend up to $20,000 per year just to maintain the trees and shrubs on their property – that’s not including lawn maintenance.  Needless to say, these folks want everything perfect.  In their effort to have their landscape look more perfect than the neighbors, the homeowners and their gardeners often go overboard – especially with irrigation.  One of the things that caught my attention during our site inspection was recurring issues with Norway spruce.  For the most part, we regard Norways as a cast iron plant and one of the last trees with which we’d expect to have problems.  Yet we saw several instances were established specimens were suffering needle die-back and declining.  


In each case the trees were irrigated in situations where they would likely grow well without supplemental watering.  But the trees were surrounded by ground covers or annual beds with heavy soils that were heavily irrigated.  Problems usually increased on down-slope positions.  


The solution?  Back off the irrigation.  Everyone knows trees need water, but roots their roots also need oxygen.  At one site we visited, the homeowner already had his gardener running the irrigation system – in April!  This is truly killing with kindness.  Most established landscape trees, shrubs and perennials  in this part of the world need little, if any, irrigation.  Newly planted trees and shrubs need an occasional (weekly to bi-weekly) drink in the first year and some follow-up the second year.  After that they can manage most years on our rainfall. In the end, a lot comes down to design.  Establish thirsty annual beds where they can be irrigated without drowning hardier trees and shrubs.

Another look at TreeGators

Following up on Linda’s earlier comments about potential problems with TreeGators, my summer interns and I did a random spot check of about 150 TreeGators currently in use on the MSU campus.  As background, MSU Landscape Services plants about 1,200 trees and shrubs each year.  All newly-planted trees which are not on an automatic irrigation system are fitted with one or two TreeGators, which are filled from a water wagon every week or every two weeks, depending on weather.  Conifers and multi-stemmed trees are fitted with Tree-Tubes, another style of irrigation bag that fits like an inner-tube around the base of a tree.  At MSU irrigation bags are usually left on trees during the first growing season.  Presnetly there are over 1,000 irrigation bags in use on the MSU campus.

During our spot-check, we found few items I would consider to be a major concern.  We found 25 trees with mold or saprophytic fungi growing in the mulch under the bags.  While unsightly, these are unlikely to cause major tree problems and will be gone once the bags are removed and the mulch is exposed to air.  All but a handful of the bags had drained properly and therefore the trunks on most of the trees were dry – eliminating the potential problems that Linda noted about the trunks remaining constantly wet.  TreeGators are designed to drain in 4-5 hours.  Therefore, on a once every two weeks or once a week filling-cycle, they should be full only 1.5% to 3% of the time.  TreeGators that are not draining between fill-ups should be checked for clogs and have a new hole punched, if needed.

It is worth noting that the dark protected space between the irrigation bag and the trunk can provide habitat for various organisms.  We found an assortment or earwigs, spiders, and millipedes; plus one tree frog and one dead bird. The major concern that we found, however, were gypsy moth egg masses (photo 1), which occurred on 14 trees.  Gypsy moths, which are serious defoliators of trees in the eastern US, like to lay their egg masses in protected locations on tree trunks so the inside of the Gator bags makes a handy hideout.  Once found, egg masses are fairly easy to remove, though killing the eggs takes some effort.

While there is a potential for pests to hide out under irrigation bags, I think the benefits of irrigating with TreeGators outweigh the potential negatives. This is especially true in our heavy Midwestern soils where it is impossible to deliver any meaningful amount of water to a newly planted tree in a reasonable time without run-off.   MSU Campus Arborist Paul Swartz reported less than 0.5% mortality out of over 1,000 newly planted trees on campus last year.  The high success rate is attributable to good overall tree management by Landscape Services, including supplemental irrigation using the irrigation bags.  The take home message from our survey is that tree care workers need to check bags at each filling to ensure that bags are draining properly and to lift up the bags and inspect for signs of pests or other issues.


TreeGators on MSU Campus


Tree frog inside TreeGator


TreeGators should drain in 4-5 hours when working properly.


Cause for concern.  Gypsy moth egg mass on trunk.