Pruning Paints Debunked

When my turn comes up to blog for the Garden Professor site I like to reflect on the horticulture in my own gardens and orchard. Right now I am focused on pruning my old apple and stone fruit orchard. It has suffered bear attacks, drought, and mismanagement before we arrived in 2018. The previous owners were very aware of the need to treat pruning cuts large and small. The remnants of tree wound dressings are found all through our orchard and range from white latex paint to silicone caulk. Unfortunately there has never been good research evidence to support pruning paint use. Despite the lack of any published evidence, for their usefulness, pruning paints are still available in garden centers and there are no end of do it yourself preparations that gardeners continue to use on pruning wounds.

Wound dressings did not protect this apple branch from decay fungi

So why paint the cuts on your fruit trees after pruning? One idea is to keep the surface protected from infection by pathogens. Plant pathogenic fungi and bacteria can cause disease that may lead to blight, cankers, or wood decay.

Laetiporus gilbersonii (chicken of the woods) is a common brown rot wood decay fungus that destroys cellulose in wood.

Wounds are often implicated in pathogenesis or disease development. Many horticulturists believed that wound dressings provide a barrier to entry of pathogens and insects. Fruit trees are easily decayed by a number of fungi which cause white and brown rots in their wood. Wood decay organisms enter through wounds created when branches break from excessive fruit loads or when pruning wounds expose heartwood or significant amounts of sapwood. So painting cuts became a very common practice advocated by gardening columns and various books over the last century.

Wound dressings used in Ukraine for many years on this shade trees did not stop decay fungi from fruiting under the wound dressing! Photo courtesy Igor Signer, Kiev, Ukraine

Wood contains cells that store starch. Here, parenchyma cells in the wood ray tissues have been stained purple to show their starch content. Fungi that invade wood use this stored energy to grow, invade and degrade wood. Fungi invade both the heartwood (non-living) and the living, water transporting sapwood. Sap-rotters typically lead to the decline in tree vigor and canopy density.

Over one hundred years ago Howe (1915) recognized that pruning paints did not help wounds to close, in fact, they retarded the development of callus wood especially in peaches. Howe called into question the necessity of using wound dressings at all. Still the use of wound dressings has prevailed to this day.

Shigo and Shortle (1981) showed that wound dressings do not prevent decay nor do they promote wound closure. If the poor pruning practices that harm trees are abandoned, then wound dressings are unnecessary (never mind that they don’t work). Shigo often maintained that tree genetics determine the extent of decay forming in a given species. His work conclusively showed that flush cuts would lead to more decay than cuts that were made outside the branch collar or bark ridge.

Expanding foam? As far as I know there is no research on expanding foam but lots of anecdotes and observations of how it is often used to fill tree cavities. Filling cavities with cement to prevent or limit decay is a practice that subsided some decades ago and is generally not recommended as part of modern arboricultural practice. By the time decay has caused a cavity it is usually well entrenched in the wood of a tree and is not controlled by filling in the void. The best way to limit decay in trees is to prune them frequently so cuts are never large and the tree (fruit or shade) develops a strong structure that is unlikely to fail.

Literature:

Chalker-Scott, L., and A.J. Downer 2018. Garden Myth Busting for Extension Educators: Reviewing the Literature on Landscape Tree. Journal of the NACCA 11:(2) https://www.nacaa.com/journal/index.php?jid=885

Howe, G.H. 1915. Effect of various dressings on pruning wounds of fruit trees. New York Agricultural Experiment Station, Geneva, N.Y. Bulletin No 396.

Shigo, A.L and W. C Shortle. 1983. Wound dressings: Results of studies over 13 ykears. J. or Arboriculture 9(10): 317-329.

Shigo, A.L. 1984. Tree Decay and Pruning. Arboricultural J. 8:1-12.

The complicated issue of heavy metals in residential soils. Part 3: How can we garden safely in the presence of heavy metals?

This is the last part of our discussion on gardening in soils that contain heavy metals (you can catch up on part 1 and part 2 if you need to). Today we’ll focus on the strategies you can use in your gardens and landscapes to reduce your exposure to soil-borne heavy metals.

Raised beds can be an easy solution for gardeners with contaminated soils

Test your soil!

First – and this should really go without saying – you must test your soil to determine if it contains heavy metals of concern. The COVID19 pandemic provides the perfect comparison: you can’t assume you don’t have the virus just because you don’t have symptoms, and you can’t assume your soil doesn’t have toxic heavy metals just because you don’t think it does. The only way to know for sure, in either case, is through testing.

This eyesore did more than spoil the view.

Most soil tests routinely report aluminum, lead, zinc, and aluminum. Other metals, such as arsenic, cadmium, and chromium, may not be part of a basic soil test and you will need to request additional tests if these metals are likely to be present. Often, county health offices will provide free soil testing if you live in a region where there are known contaminants. For example, I live in the Tacoma area where large amounts of arsenic were deposited for decades downwind of an aluminum smelter. Residents of Pierce County can get free soil testing because of the potential danger.

The aluminum is higher than we would like to see, though everything else looks fine.

Even if you don’t live in an area where industrial or agricultural activity may have added toxic heavy metals to your soils, your soil may naturally contain high levels of some metal of concern. As I’ve mentioned in a previous post, our soils have high levels of aluminum. Because we are not downwind of the smelter site mentioned above, I would not have assumed we had any metals of concern, given the rural location of our land, but knowing this informs my choice of vegetables to plant.

The demolition of the Tacoma smelter. Finally.

Avoid adding more heavy metals

Fortunately, many of the consumer products that contained heavy metals are now gone and no longer will add to existing levels of soil metals. But there are still sources out there that gardeners are well-advised to avoid.

  • Older treated timbers. As mentioned in my first post, landscape timbers were once treated with a chemical preservative containing arsenic and chromium. Even though gardeners love reusing materials (we are a thrifty bunch!), these older timbers should be removed if they are still on your property. New timbers are treated with a copper-based solution, which is a more environmentally friendly preservative.
  • Kelp-based fertilizers and amendments. While these products are wildly popular with gardeners, they aren’t very effective fertilizers. Moreover, some kelp species accumulate heavy metals, like arsenic, in seawater and these metals will become a permanent part of your soils. Take a look at this fact sheet for more information.
  • Recycled rubber mulch. This product should be avoided for many reasons (you can read more about the problems in this fact sheet). As it disintegrates it releases high levels of zinc into the soil. And while zinc is an essential micronutrient in plants (and people!), high levels are toxic.
  • Unregulated composts and organic products. Certified composts and other organic products have been tested for pesticide residues and heavy metals: unregulated products have not. Unless you are making your own compost from materials you know to be free from contamination, your safest bet is to purchase certified products.

If you have materials like old timbers, you should never burn them or throw them away. They need to be disposed of as a hazardous waste, much like old cans of paint, mercury-containing thermometers, etc. Eventually, we may be able to use these hazardous discards for biofuel production through pyrolysis, or extract the heavy metals from them for reuse. For now, just dispose of them in a legal and environmentally responsible way.

Cedar is naturally decay-resistant and can be a good choice for rasied beds

Suggestions for safe gardening

If soil testing reveals high levels of metals of concern, there are work-arounds to allow you to still enjoy growing vegetables safely. If your soil tests reveal that your soil is safe for growing edibles, congratulations! You may still benefit from some of the suggestions below.

  • Cover exposed soil with ground covers and mulches (coarse organic or inorganic materials) to eliminate metal-laden dust.
  • Create raised beds for edibles using untreated wood or other metal-free materials. Line the bottom of the bed with an impermeable membrane to prevent movement of soil-borne metals into the beds.
  • If raised beds are not possible, use large containers to grow edibles.
  • Avoid using galvanized tubs, as they will leach zinc (and sometimes chromium) into the soil.
  • Fill beds and containers with clean (i.e., tested) soils or potting media.
  • Don’t plant vegetables near roadways, which are a source of airborne lead.

The complicated issue of heavy metals in residential soils, part 2: How plant species and environmental variables complicate the issue

Last month we discussed the various heavy metals that might end up in your garden and landscape soils. Today we’ll consider how different factors can alter heavy metal uptake by plants.

Parking strips can contain high levels of lead after decades of car exhaust

First of all, let’s consider plant uptake. Plant roots can either accumulate a particular metal or exclude it. If they exclude it, that’s the end of the story, (though it’s still a soil contaminant). If plants take it up, they can either store it in their roots, or they can transport it to some other part of the plant – stems, leaves, flowers, and fruits are possible destinations for metals in accumulator plants. Accumulation varies with plant species and life stage; in other words, seedlings may have different uptake abilities than later life stages. And of course, whether a plant accumulates or excludes a particular heavy metal does not mean the same uptake pattern holds for other heavy metals.

Clay soil will bind heavy metals tightly

Secondly, soil conditions will influence heavy metal mobility. Heavy metals are positively charged, so anything in the soil that carries a negative charge – like clay particles and organic matter – will tend to hold heavy metals in place. That can either be good or bad, depending on your use of the landscape. If you are growing edibles, metals that are tightly bound to the soil are less likely to be taken up. But this also means that they are pretty much there to stay. Sandy soils don’t hold metals well, since sand particles carry no charge, so heavy metals are free to move elsewhere – into the air, into bodies of water, or into plant roots.

How soil variables affect heavy metal uptake

Additions of fertilizers, like those that contain phosphate or that chelate metals, will also increase the ability of plants to take up heavy metals. Likewise, earthworms ingest metals and bind them to other compounds that can be taken up by plant roots. And microbes associated with the roots (and the roots themselves) can acidify the rhizosphere, solubilizing metals and making them easy to incorporate.

Earthworms make all kinds of things available to plants – including heavy metals

It’s apparent that many factors are at play in determining whether plants will take up heavy metals, thus making it impossible to come up with lists of “safe” plants. There are hundreds, if not thousands, of studies on heavy metal uptake of vegetable and other crop plants worldwide, and the variability among their results is a direct reflection of the complexity of soil environments and plant physiology. Nevertheless, there are some very general observations about accumulator species that can be gleaned from the research:

  1. Roots are the most likely tissue to contain heavy metals, since they are the point of uptake; arsenic can accumulate in carrots and lead has been found in carrots and potatoes;
  2. Stems are much less likely to accumulate heavy metals, as they are basically just a straw connecting roots to leaves and other terminal tissues;
  3. Leaves, including basil, lettuce, and spinach, can accumulate heavy metals. Moreover, it appears that red leafed cultivars may accumulate more than those that are green leafed;
  4. Flowers and fruits, including vegetable tissues that produce seeds, are less likely to accumulate heavy metals. For plants that depend on animals to spread their seeds by ingesting the surrounding fruits and then excreting their seeds, it would be an evolutionary disadvantage to have those tissues carrying toxic heavy metals. That being said, there are vegetables, like beans, broccoli, and zucchini, that can accumulate heavy metals such as lead and arsenic.
Red leaves may contain more heavy metals than green ones.

By this point, I think we can agree there will never be a “one size fits all” approach to gardening safely when heavy metals are part of the soil, water, or air environment. Next month I’ll provide suggestions on how to navigate the confusion and design your own approach to creating gardens and landscapes that work around heavy metal contamination.

The worms crawl in and the worms crawl out but these worms kill your plants

Our first major frost hit my part of Arizona a month ago, killing all tomato vines. I did my thanksgiving cleanup chores–removed all the vines and ground them into mulch. I noticed an ominous symptom on one a few of the heirloom varieties (Prudence Purple) that I removed—galled roots. This symptom when seen on tomato is evidence of Root Knot Nematode (RKN). More about RKN shortly. Nematodes are non-segmented worms, mostly free living in soil and feed on bacteria, fungi, small animals or each other. Nematodes are small, barely perceived without magnification but easily observed under low power microscopy. Most nematodes are principal components of the soil food web and are vital to its health and functioning. A few kinds (>30) are opportunistic plant feeders. Plant pathologists consider nematodes plant pathogens because they evoke complicated responses in plant physiology leading to the development of symptoms.

Root knot nematode (Meloidogyne spp.) forms extensive galls on Prudence Purple tomato by the end of a growing season.

Plant parasitic nematodes have some common features and some rather diverse feeding habits and lifestyles. All plant parasitic nematodes have a stylet or spear at their mouth end that is used to puncture plant tissues and such the sap from their host. Looking under a dissecting microscope you may not be able to identify the genus of a nematode but you can tell if it is bad for plants by seeing the spear just behind its mouth. Plant Parasitic Nematodes (PPN) are either migratory or sedentary. All PPN reproduce by eggs and molt once inside the egg emerging as a second instar juvenile nematode. After a couple more molts the juveniles become adults. Male nematodes are less common than female worms. As adults they can keep feeding from plant to plant if they are ectoparasitic (feeding outside of the root) or they can settle down and make eggs inside a cyst or gall. Some nematodes are endoparasitic and once inside the root never leave it until their eggs hatch and juveniles swim off find another host.

Even though these marigolds are heavily galled by root rot nematode their only above ground symptoms are dwarfing or slowed growth

Gardeners should be on the lookout for PPN by noticing symptoms of infection. The most common symptom caused by nematodes is stunting or reduced growth. There may be no other symptoms observable. When the number of PPN is quite large, yellowing or chlorosis can occur as the worms shut down a plant’s ability to take up water and minerals. RKN is the most common destructive plant parasitic nematodes for many gardeners. The gall symptoms on roots are indicative of an infested host. Galling can be light or complete, occurring on every root the plant has. RKN survives in soil for years even without a host because the eggs enter a dormant stage called cryptobiosis. Hatch is snychronous with susceptible roots that grow nearby. Root knot nematodes can build huge populations in a single growing season. Gardeners get nematodes by introducing contaminated soils that come with plants to their gardens. Since symptoms don’t show on plants with minor infections, people think they are buying healthy stock. Even with RKN, there may be juveniles in the soil that have not formed galls yet and when introduced to your garden they will develop later on susceptible plants.

RKN has a very wide host range. Fruit trees, impatiens, calendulas, and tomatoes are a few of its common hosts. Perennial plants can really develop high populations of RKN because the host is undisturbed and provides many seasons for the pathogen to develop. Once detected as galls on roots the plant should be removed and destroyed. RKN is particularly horrible for tomatoes and other annuals when it combines with fungi that also cause disease. RKN forms disease complexes with Fusarium which causes wilts. When tomatoes are infected with both RKN and Fusarium the symptoms are severe, and the plant will die relatively early in its life cycle often before a crop can develop.

Chipping or grinding and composting will kill most nematodes if you want to reuse your greenwaste. More likely RKN will survive as eggs in the soil. Soil samples that find just one RKN per gram of soil sample are considered hazardous as the worms can rapidly develop from these low populations. You may have heard that Marigolds will control RKN. Switching gardens to a non-host (crop rotation) does help decrease populations. And French marigolds and crucifers if tilled into soil as “green manure” will decrease RKN but these methods will not eliminate them from soil. There is a dose response to tilling in mustards so the more you incorporate the more RKN will be harmed. Some varieties are better than others. Fumigation provides a good level of control but is not feasible outside commercial agriculture. Soil solaraization with plastic tarps also controls nematodes in the upper regions of soil but there are usually many eggs that survive in lower soil profiles. The best control is not to plant susceptible plants.

Some tomato varieties are resistant to RKN. In fact VFN (Verticillium Fusarium and Nematode resistant) varieties should be chosen to avoid recurrent problems. The resistance to RKN in tomato is not complete and under high nematode populations and/or high temperatures the resistance can break down and even resistant varieties can develop galls and symptoms. There are no pesticides that home gardeners can use to kill nematodes. However there are biological controls of nematodes and since they are soil food web opportunists, increasing the diversity of organisms in soil tends to cut down on PPN. As always, fresh arborist chips applied as mulch will build a resilient soil food web and will slow the development of PPN harmful to garden plants.

Fall is for fungal fruit

Summer is done. The last apples are coming off my orchard trees now and persimmons are ripening fast. Some fruit remains to be picked but most is off. As garden productivity subsides we turn our tasks to winter. In Southern California it means planting the winter vegetable garden, in Northern Mn snow has already flown so gardens are shut down now. For fungi that may be pathogens in our gardens, it is a time for reproduction. Fall is the time for fruiting and for gardeners a time to reckon with next year’s disease cycles.

Most fungi are saprophytic, that is they live on dead or decayed organic matter. Fungi are largely responsible for recycling forest nutrients from litterfall (leaves, branches and whole trees) back to soil minerals. Without fungal decay, mulch would never break down and organic matter would pile up. If you use fresh wood chips (often advocated in this group) you may notice that after some time they are full of fungal mycelium or cordons (rhizomorphs). This is normal and healthy—a good sign that your mulch is decomposing and improving the underlying layers of soil.

Furngi survive as fruting bodies in cankered branches, dead wood and leaves

Some plant pathogen fruiting bodies are edible. The mushrooms formed by Armillaria are often collected and considered delectable by many. Most edible fungi are saprophytes or mycorrhizal fungi. Truffles and other edible mushrooms like Chanterelles are plant symbionts often benefiting oaks and other northern temperate trees. Some wood decay fungi are also considered a delicacy such as the Oyster mushrooms (Pleurotis spp.) or the sulfur mushroom (Laetiporus gilbersonii). I don’t recommend harvesting wild mushrooms for food unless you are able to accurately identify what you collect, even then, second opinions of mycologists are a good idea. Also, not everyone reacts the same to fungi when they consume non-commercial mushrooms, so moderation is best or just get your fungus from commercial sources.

The sulfur conk (Laetiporus gilbersonii) is an edible wood decay mushroom

Not all fungi are beneficial. Some have evolved life histories that allow them to gain energy not from organic matter or dead plant materials but from living plants. These are parasites. Fungi have been evolving their lifestyles for about 400 million years and in that time have developed several strategies involving plant hosts to live and reproduce. Sixty five million years ago, after the Cretaceous-Paleogene extinction event that famously destroyed dinosaurs, fungi bloomed on earth and increased in importance. As land plants diversified, so did fungi developing many forms and parternships, many of them becoming essential to plants such as mycorrhizae. A few fungi specialized as plant pathogens.

Fungi use their reproductive structures to survive and ready themselves to attack susceptible plants. The most common fungal fruiting body the mushroom may not seem like a survival structure. But mushrooms can produce millions if not over a billion spores. Massive spore production ensures that some of those spores will find a place for the organism to survive. Also some mushrooms found on trees (sometimes called conks or bracket mushrooms) are perennial, and live for years—each year they add a new spore bearing surface over the last one. Many of the pathogenic tree fungi that produce conks fruit in the fall or winter.

Mushrooms help fungi survive by producing millions of spores. Don’t attempt to eat this kind though as it is an Amanita and is poisonous! Never eat wild or collected mushrooms without proper identification and study.

Many fungi form their fruiting bodies as small melanized structures that contain their spores. These are often formed in dead host tissue, such as dead twigs or branches. The spores are protected until they are splashed by water onto tender or susceptible plant tissues such as shoots. In soil, fungi can form hyphae that are very concentrated and melanized in to long lasting structures called scleortia. They lay dormant in soil for years until a susceptible root grows into them. Crop rotation often helps to limit disease but some fungi can last decades between crops and remain viable by producing thick walled spores called chlamydospores or sclerotia. The wilt fungi (Fusarium and Verticillium) survive in this way.

Another key strategy that fungi use is a kind of timing called phenotypic synchronicity. Fungi often have their spores ready to be dispersed exactly when new growth or susceptible plants are available for infection. The timing also often aligns with weather conditions that favor spore dispersal or arrival at the intended plant growth stage or phenotype.

Fungi evolved with land plants to take advantage of the environmental conditions and phenology of their hosts. We can interrupt the process with a bit of diligence as gardeners. As fall continues and winter approaches, it is a good time to remove dead twigs and branches from perennials that are prone to disease, clean up fallen or dead flowers from plants like Camellia that are attacked by petal blight because the flower mummies contain sclerotia that start the disease in the Winter. Unfortunately removing conks from trees does nothing to stem the progress of wood decay fungi in the tree they formed on, or their further spread, because so many spores are formed that the few mushrooms we remove will not stop those diseases. Some evidence suggests that increasing soil organic matter will over time reduce soil-borne pathogens, but once a pathogen has affected a perennial, there is often little to be done about it as in the case of Verticillium wilt of shade trees. No matter how fungi survive, its always a good idea to apply fresh tree trimming chips around perennials in the garden….

When littering is a good thing

Dried leaves shred easily (photo from needpix.com)

I’ll be the first to admit it: I am a neat freak. I work best on desks with little clutter and feel calm and relaxed in spaces that are well-organized. But outdoors, it’s a different story. Dynamism is in charge and it’s refreshing and exhilarating to be surrounded in nature’s chaos. So this time of year can bother me when I see gardeners putting their neatness imprint on their gardens – especially onto their soils.

It may look neat, but it’s not really soil (photo from freeimageslive.com)

If you Google the word “soil” and look at the images that pop up, nearly all of them look the same. Nice, dark brown, granular stuff, often lovingly cradled in a pair of hands, that really looks more like coffee grounds than soil. In fact, the only realistic picture in the first page of images comes from the Soil Science Society of America. THAT’S actual soil.

One of these things is not like the others….
This one.

So gardeners must discard the “tidiness ethic” that seeps out of the house and into the soil. Soils are living ecosystems, and living ecosystems are messy. A living soil will have some sort of organic topdressing (mulch) resulting from dead plant and animal material that accumulates naturally. In temperate parts of the world, this happens every autumn, when leaf fall blankets the soil with a protective and nutrient-rich, organic litter. And what do we do? Why, we rake it or blow it and bag it and toss it. Then we turn around and buy some artificial mix of organic material and spread it on top – because it looks nice and tidy.

Keep the leaves out of the landfill!

Let’s stop this nonsensical cycle. Stop buying plastic bags for leaf disposal. Stop buying organic matter for mulch. Instead, use what nature provides to protect and replenish your soils. This doesn’t mean you have to leave messy piles of leaves that blow around rather than staying put. Instead, shred them! They look nicer, they stay in place better, and they break down faster. The easiest way to do this is to either run a lawnmower over them, or to put them into a large plastic garbage can and plunge a string trimmer into them. (Bonus – if you use a battery-operated mower or string trimmer you reduce your fossil fuel use.)

Likewise, if you have twigs, prunings, and other woody material, save these too. A chipper is a useful, though expensive, purchase. But those woody chips are the best mulch you can use over your landscape and garden beds. Most plants rely on mycorrhizal fungi, and these fungi require a source of decaying wood to function optimally. The chips can go right on top of your leaves to keep them in place and add a slow feed of nutrients.

Lovingly cradled fresh wood chips

So this fall, see how much of your garden’s refuse can stay on site. Compost soft materials; shred dead leaves; chip woody material. You’ll reduce your contribution to the landfill, and improve the health of your soils and plants alike.

Extremes

Extremes

On September 06, 2020, it was 122F in my yard in Ojai, California. A new all time high never before recorded in Ojai, Ca.

Here in California we had an extreme heat event on September 6, 2020. In my yard temperatures peaked at 120 degrees F. This also happened back in 2018 earlier in the summer where we reached a similar peak temperature. It is not supposed to get to be 120 degrees F. in Ojai. This year new high temperature records were set all over southern California for the month of September. Following these heat extremes, wildfires have spread from border to border (Canada to Mexico) in western states. As we suffer through heat and flames here in Western US states, we are also now told that this is a la Nina year so Southern California will continue with drought conditions into 2021. Extremes in climate bring hot dry weather to the Western United States and hurricanes and drenching rains to the eastern United States. Plants in landscapes may or may not be adapted to these extremes.

Damage from September 6, 2020 heat day showing damage to foliage on the tree on the right; a native Coast Live Oak (Quercus agrifolia), but not on the non-native Peruvian Pepper (Schinus mole).

My poster child heat monitor is the coast live oak, Quercus agrifolia. When temperatures exceed triple digits >110F, foliage on this native oak turn brown and burn on the south exposed canopies. They are not adapted to these record temperatures. This can be evidenced by looking at the damage throughout many California communities. Coincidentally other non-native plants are better adapted to high temperatures. The California pepper or Peruvian Pepper (Schinus mole) does fine in 120F weather with no irrigation. Eucalyptus of several species also have tolerated these increased temperatures. Trees that are drought stressed from lack of irrigation after a long dry summer will sunburn more severely than the same plants under consistent irrigation. If you see this kind of damage, its best to leave it alone until the plant responds by growing new shoots.

Damage to the tender new growth and leaves of Cherimoya. Sunburn symptoms usually show in the middle of leaves.

While study of “climate ready” trees is giving us tree selection options for hotter climates, the research is still new and we have many other species to consider beyond what has been recently reported. Of the species I have in Ventura County few of our study trees showed any damage from the extreme heat, and only the very youngest leaves were damaged on western hackberry and Catalina Cherry. Pistache, Island Oak, Palo Blanco, Tecate cypress, Arizona madrone, and Ghost Gum were not affected by triple digit weather this September. Other ornamental species that were damaged all over Southern California include the following: Avocado, Camphor, Privet, Magnolia, Coast Live Oak, Sycamore (especially the native Platanus racemosa), loquat and ornamental plum.

It our recent heat damage surveys I have observed that Coast Live Oak and Western Sycamore, two native trees that enjoy widespread tree ordinance protections were consistently damaged by our hot day early this month. If we continue to have extreme hot days, poorly adapted native trees will be injured more frequently, and possibly become more susceptible to damaging insects or native pathogens. This tends to restrict the range of natives to areas they are still adapted to growing in or grow into a new region where they are more successful. A time may come when a native tree is not the best choice for your area.

McPherson E.G., Berry, A.M., van Doorn, N.S., Downer, J, Hartin, J., Haver, D., and E. Teach. 2020. Climate-Ready Tree Study: Update for Southern California Communities. Western Arborist 45:12-18.

Making your landscape fire resistant during wildfire season

Wildfires are increasingly threatening urban areas. Photo from Wikimedia.

This topic may have no relevance to where you live – but it’s very much front and center here in western Washington this summer. Our naturally droughty summers have gotten longer, hotter, and drier thanks to climate change. Wildfires are ravaging all of the west coast, on both sides of the Cascade mountains. And one of the recommendations I see for fire-proofing your landscape is to remove all wood-based mulch. While this might seem logical, it’s not. And here’s why.

Not all wood mulches are equal. Wood chip mulches, which readily absorb water, are different than bark mulches, which can be quite impervious to water based on the type of bark and how fresh it is. The waxy components of bark not only make it resistant to water movement, they also more likely to burn. Likewise, pine needles, cones, straw, and other coarse organic mulches absorb little water and easily ignite. They should be avoided in fire-prone areas.

Pine needles and pinecones are a natural mulch layer in pine forests – but they burn readily. Photo by Pxfuel.

Wood chips are one of the least flammable mulches, and if landscape plants are properly irrigated, the wood chip layer is going to be increasingly moist as you work your way down to the soil. This reduces flammability, while maintaining plant health. And healthy plants are more likely to survive fires than water-stressed plants – because they are full of water. (Oh, and those “flammability lists” of plants you might see? Dr. Jim Downer has already debunked that approach.)

Rubber mulches are the very worst choice you can make for a wildfire-resistant landscape. They burn readily and they burn hot.

The best way to reduce wildfire damage to your planted landscape is to keep it irrigated. Bare soil is a no-no in planted landscapes, regardless of what you might see recommended elsewhere. A well-hydrated landscape with green lawns and healthy trees and shrubs is not going to catch fire from a spark or ember. And it might even survive a fast-moving wildfire.

Yes, it takes water to protect a planted landscape from fire. If consistent irrigation isn’t feasible, you might want to rethink your plantings.

We saw this in eastern Washington this week, where the small town of Malden was 80% destroyed by a fast-moving fire. But some homes were spared – why? Whitman County Sheriff Brett Meyers pointed out “those people that had some green and some buffer around their home were able to maintain their homes.”  

Did these houses survive because of a green buffer?

So while it may seem counterintuitive to keep woody debris on your soil, look at the whole system – not just a piece of it. If you don’t have plants anywhere near your house, then bare soil is the way to go. But for planted landscapes, wood chip mulch is part of the solution – not the problem.

A time to deadhead!

Summer is here in the west in a big way. We are just coming off of one of the largest heat waves ever recorded, and while temperatures are down they are not done. Its hot. Depending on where you live your gardens may have suffered. In the East Hurricanes are starting and extreme rains are occurring. I have images of bent over palm trees in Florida. No matter the season, plants respond with their own growth stages providing they are not blow away or burnt up by raging wildfires. Here in Arizona we have had moderately hot weather in my location but the garden is surviving with irrigation. My Iris plants remind me that it is long past time to deadhead and remove spent flower stalks. Deadheading is second nature to most gardeners and other than making the garden look better, you may not realize why you have or have not adopted this common garden practice.

Deadheading involves removing the spent flowers or inflorescences have withered.  Sometimes pruning back to a lower leaf or adventitious bud in the case of roses, or completely removing flower stalks in the case of German Iris is required.   The immediate result is a neater looking garden and an emphasis on remaining blooms. When the dead flowers are gone the remaining flowers look better the garden is refreshed. Depending on the plant there can be other benefits if deadheading is done consistently and is well timed.

This portion of the flower garden needed deaheading weeks ago. Even though I won’t advantage the plants by deadheading it will look better if I do.

We grow many kinds of plants in our gardens and deadheading has varied physiological impact depending on the subject being pruned. Properly timed, deadheading can extend the bloom of some plants for example Calendula.  However, Calendula produces lots of flowers and removing spent flowers can become an enduring task if you have a lot of Calendulas.  Deadheading some garden plants seems pointless such as impatiens which just regenerates flowers on its own. Deadheading soon after a flower passes prevents the plant from investing energy in seed development. If the plant has a long enough bloom cycle, so that energy can be put into other flowers then trimming back the flowering stem stems that are destined to fruit production often releases other buds to grow more flowers. Since photosynthate (sugars) flows in plants on a source-sink model, taking away the “sink” or developing fruit allows  energy to be used for growth elsewhere in the plant. The trick is to remove spent flowers soon because seed begins to form immediately after flowering and the plant will rapidly allocate its energy to reproduction once the flowers are pollinated.

with dead heads removed this corner of the garden looks a bit better

Not all garden plants respond to deadheading–the number of flowers some plants present is genetically regulated and dead flower removal does not promote more flowering (many bulbs produce only one set of flowers). Other garden plants will re-bloom if given a chance, and with deadheading (no matter what the flowering habit) the garden will look better without the dead flowers. Some bulbs can be deadheaded to prevent seed formation so that the energy is put back into the bulb or bulblets for next year’s display. Many roses will re-bloom after deadheading. This is not a wild-type characteristic of roses but a quality that has been selected for after years of plant breeding.

Deadheading can also be an excellent method of excluding diseases. Botrytis on rose blossoms and petal blight on Camellia are both controlled to some degree by removing infected blooms as soon as they are observed and disposing of them away from the garden.

This bag contains Penstemon with ripe seed heads ready for harvest and seeds for planting somewhere else in the garden.

Sometimes deadheading results in seed collection. Left too long, some plants go to seed but have not yet released their seed. If you want to save seed for propagation, strategic deadheading will allow you to collect seed while redirecting the plants growth patterns for more vegetation or more flower shoots. It is also helpful with our more ruderal garden friends to remove flower stalks to prevent their reproduction and taking over of smaller garden spaces that endure frequent cultivation or soil disturbance. Some plants are desirable but their progeny are a bother….

What’s wrong with my tree? You won’t find the answer in a book.

This tree suffers chronic drought stress every summer. Why?

It’s the middle of summer, and maybe you’re wondering what’s wrong with your landscape tree (or shrub) that just doesn’t seem to be putting on the growth that you’d expect this time of year. Before you take any “corrective” action, let’s figure out what the problem might be. Here’s a short checklist that we will start with. (NOTE: This is just a start. You can go so many different directions once you have some specific concerns to explore.)

Do you have one of these? If not, you can’t adequately diagnose problems.
  1. Soil information. Have you had a soil test done in the last few years? If so, are there any nutrient toxicities indicated? Has the soil been significantly disturbed or modified in the last several years? Have you recently added any chemicals (fertilizers and pesticides, organic or otherwise) or amendments?
  2. Plant information. When was the plant installed? Was it in a container or in a burlapped rootball? If so, were all materials removed from the roots by root washing before planting?
  3. Planting information. Did you amend the soil (i.e., add anything to the backfill) prior to planting? If so, what did you add? Did you mulch it afterwards? If so, what is your mulch material? Did you ensure that your plant was set at grade in the landscape? (“Grade” means that the root flare is at the soil surface.) Did you water it in well and avoid compacting the soil? Are new plantings adequately irrigated during their first year in the landscape?
  4. Environmental information. Have there been unusual weather events between time of planting and now? Is there sufficient irrigation and drainage?
  5. Symptoms. What are you seeing that concerns you?
Intact clay rootball after 28 years (and yes, the tree died long before this photo was taken).

At least 95% of the landscape failure cases I’ve diagnosed over the last 20 years can be traced back to improper planting methods. You simply cannot pull a woody plant out of a pot and stick it in a hole. There are three major factors at play here to consider when rootballs are planted intact:

Think that this root system can straighten itself out? Think again.
  1. The textural and structural differences between the soilless media around containerized roots (or the clay in a B&B rootball) and the soil in the landscape are significant enough that they will impair water, air, and root movement across the interface. This means roots have a difficult time establishing outside the planting hole.
  2. Any structural flaws in the root system created during improper potting-up at the production nursery, such as circling or J-hooked roots, are undetected and uncorrected. And these woody roots will stay in a death spiral after planting.
  3. If you cannot see the root flare of your plant, then you cannot plant at grade. Most trees and shrubs that are buried too deeply will generally fail to thrive and eventually will die.
If you can’t see the root flare, you’ve got a problem. See the next photo.

If you’re like the majority of people who are seeing problems this time of year, you know that improper planting or severe soil disturbance is to blame. But now is not the time to fix it! You’ll need to wait until the fall, when the crown has gone dormant, to dig the plant up and take corrective action. (The “corrective action” has been discussed in this blog before; you can explore the archives or wait for an upcoming post).

These are the roots of the tree at the top of the post. No root flareNo surprise that it’s chronically water stressed in the summer, given this pathetic root system.

What you want to do right now is keep your plant as healthy as possible by mulching with coarse wood chips (not bark) and supplying them with adequate water. You DO NOT want to prune them, because that just uses up stored resources as the plant then replaces pruned material with new shoots and leaves. You DO NOT want to add fertilizer, unless you know that you have a nutrient deficiency (which you can’t know unless you’ve had a soil test. And no, those cute little diagrams of what nutrient deficiencies look like in corn leaves are worthless. You’re not growing corn here.) And DO NOT add any pesticide of any sort, even if you see signs of insect or disease damage on the foliage. With few exceptions, pesticides are broad-spectrum and you will kill beneficial species as well as any possible pests. Opportunistic pests and disease attack stressed plants, and that’s why you are seeing them.

Crown pruning just results in more crown growth. Don’t do this if you are planning to move a woody plant during the current year.

In the upcoming months, I’ll do some follow up case studies that can help you learn how to diagnosis problems. If you’re interesting in having your tree or shrub problem diagnosed and can supply sufficient information (as outlined above) and clear photos, leave a comment on this post and I’ll contact you.