What’s wrong with my tree? You won’t find the answer in a book.

This tree suffers chronic drought stress every summer. Why?

It’s the middle of summer, and maybe you’re wondering what’s wrong with your landscape tree (or shrub) that just doesn’t seem to be putting on the growth that you’d expect this time of year. Before you take any “corrective” action, let’s figure out what the problem might be. Here’s a short checklist that we will start with. (NOTE: This is just a start. You can go so many different directions once you have some specific concerns to explore.)

Do you have one of these? If not, you can’t adequately diagnose problems.
  1. Soil information. Have you had a soil test done in the last few years? If so, are there any nutrient toxicities indicated? Has the soil been significantly disturbed or modified in the last several years? Have you recently added any chemicals (fertilizers and pesticides, organic or otherwise) or amendments?
  2. Plant information. When was the plant installed? Was it in a container or in a burlapped rootball? If so, were all materials removed from the roots by root washing before planting?
  3. Planting information. Did you amend the soil (i.e., add anything to the backfill) prior to planting? If so, what did you add? Did you mulch it afterwards? If so, what is your mulch material? Did you ensure that your plant was set at grade in the landscape? (“Grade” means that the root flare is at the soil surface.) Did you water it in well and avoid compacting the soil? Are new plantings adequately irrigated during their first year in the landscape?
  4. Environmental information. Have there been unusual weather events between time of planting and now? Is there sufficient irrigation and drainage?
  5. Symptoms. What are you seeing that concerns you?
Intact clay rootball after 28 years (and yes, the tree died long before this photo was taken).

At least 95% of the landscape failure cases I’ve diagnosed over the last 20 years can be traced back to improper planting methods. You simply cannot pull a woody plant out of a pot and stick it in a hole. There are three major factors at play here to consider when rootballs are planted intact:

Think that this root system can straighten itself out? Think again.
  1. The textural and structural differences between the soilless media around containerized roots (or the clay in a B&B rootball) and the soil in the landscape are significant enough that they will impair water, air, and root movement across the interface. This means roots have a difficult time establishing outside the planting hole.
  2. Any structural flaws in the root system created during improper potting-up at the production nursery, such as circling or J-hooked roots, are undetected and uncorrected. And these woody roots will stay in a death spiral after planting.
  3. If you cannot see the root flare of your plant, then you cannot plant at grade. Most trees and shrubs that are buried too deeply will generally fail to thrive and eventually will die.
If you can’t see the root flare, you’ve got a problem. See the next photo.

If you’re like the majority of people who are seeing problems this time of year, you know that improper planting or severe soil disturbance is to blame. But now is not the time to fix it! You’ll need to wait until the fall, when the crown has gone dormant, to dig the plant up and take corrective action. (The “corrective action” has been discussed in this blog before; you can explore the archives or wait for an upcoming post).

These are the roots of the tree at the top of the post. No root flareNo surprise that it’s chronically water stressed in the summer, given this pathetic root system.

What you want to do right now is keep your plant as healthy as possible by mulching with coarse wood chips (not bark) and supplying them with adequate water. You DO NOT want to prune them, because that just uses up stored resources as the plant then replaces pruned material with new shoots and leaves. You DO NOT want to add fertilizer, unless you know that you have a nutrient deficiency (which you can’t know unless you’ve had a soil test. And no, those cute little diagrams of what nutrient deficiencies look like in corn leaves are worthless. You’re not growing corn here.) And DO NOT add any pesticide of any sort, even if you see signs of insect or disease damage on the foliage. With few exceptions, pesticides are broad-spectrum and you will kill beneficial species as well as any possible pests. Opportunistic pests and disease attack stressed plants, and that’s why you are seeing them.

Crown pruning just results in more crown growth. Don’t do this if you are planning to move a woody plant during the current year.

In the upcoming months, I’ll do some follow up case studies that can help you learn how to diagnosis problems. If you’re interesting in having your tree or shrub problem diagnosed and can supply sufficient information (as outlined above) and clear photos, leave a comment on this post and I’ll contact you.


Glass bowls make excellent closed terrariums. This one has been planted for about three years. Episcia cupreata. and Begonia luzonensis dominate this planting.

Terrariums are are contained environments that allow culture of plants. They take many sizes, shapes and dimensions and can be sealed or open. At the least terrariums are just plants in a bottle, in their highest form they are cultivated landscapes in miniature. Closed terraria create a unique environment and opportunity for plant growth. The transparent walls of the container allow for both heat and light to enter the terrarium while maintaining high relative humidity and preventing system water loss. Sealed containers combine retained moisture and heat which allows for the creation of a small scale water cycle. This happens because moisture from both the soil and plants evaporates in the elevated temperatures inside the terrarium. Water vapor then condenses on the container walls and eventually drips back onto plants and soil below. A sealed terrarium is ideal for growing some kinds of plants due to the constant supply of water, thereby preventing them from becoming dry. Lowland jungle plants from warm climates will do well. Some cloud forest plants, orchids and bromeliads will not fare well in sealed environments because they require more air movement and/or cooler temperatures. Terrarium culture can allow growth of plants difficult to cultivate even in greenhouses. Terrariums can be displayed to great effect and are an easy method of indoor gardening. Success with a terrarium garden requires an understanding of the container, light, media, and the plants themselves.

My favorite terrarium fern Lemmaphyllum microphyllum (center). On the very bottom is the vining Peperomia prostrata and at the top is a runner of Ficus minima ‘Quercifolia’.

A Word about the Plants
A contained environment is not for all plants. When in a sealed environment, certain plants such as cacti or succulents will grow poorly or in a manner not suited to their habit (lanky or etiolated growth). Problems arise when plants not suited to a small contained environment are used. Plants such as Syngonium, Diffenbachia, and the larger Peperomia spp. look good when planted initially, but will soon outgrow their space–they are not suitable for closed terrariums. The classical “florist” terrarium planted with very young houseplants looks good at first but is completely unsustainable for months or years. A well designed terrarium should grow for multiple years before a complete tear down and replant is necessary. Thus it is necessary to select truly miniature and high-humidity-loving plants for closed terrarium culture. Ferns, sellaginellas, gesneriads, begonias and some peperomias are suited for these conditions. Obtaining truly miniature and humidity loving plants is difficult. Online vendors are the most accessible sources, but also other hobbyists or plant societies can be sources at their annual sales. Nurseries carry some of these plants but the vast array and diversity of rare plants are found on Ebay and Etsy. Many nurseries list plants under the ‘terrarium plants’ search words that are not really suitable, so take care to look for truly small or miniature plants. Perhaps start with the list I have provided at the end of this article for some of the tried and true plants that will work well. Terrarium gardens are not sustainable if you make bad plant choices, you will eventually end up removing plants that outgrow their containers.

The Container
Once you have your plants, you are ready to start. Or you can start before getting your plants and set up your terrarium now to plant later, or in stages, as you acquire new specimens to add into your contained garden. The first consideration is a suitable container. The larger the container the easier it will be to plant, grow and maintain your garden. Larger containers will also allow for a greater diversity of plant types. Fish aquariums may not be the most attractive, but are the most practical in many ways. Because they are rectangular they allow for placement of a light on the lid and they are easy to cover and place on square surfaces such as tables or window sills. Glass containers are preferred over plastic because they maintain transparency better over time. While bottles are attractive, if you can not get your hand inside they can be very difficult to plant and maintain.

Small containers are not optimal but if the plants are small, they can work well. This sundew has been in this container almost for a year

The Media
Lowland, humid jungle plants grow in decomposing organic matter. For our purposes peatmoss is the best medium. It can be amended with fine horticultural perlite (20-30%) or sand. Sand will make a heavier mix, and, if you are doing a large terrarium, mix weight is important. If not, sand is ideal. Also, since terrariums are contained, they may become disease gardens if you are not careful. Therefore I recommend sanitizing your media in a microwave until the media temperature exceeds 160F. Keep the bag closed until the media cools. A turkey roasting or other microwave safe bag works well. Media can be sanitized in a conventional oven–it just takes longer. Media should be moist but not wet when microwaved. Distilled water can be added later to moisten the media after planting. Commercial mixes can be used for terrarium media but care should be taken. Search the blog for my article on potting soils.

Since terraria are sealed environments, you need a reservoir for the water and a filter. Create the reservoir with coarse horticultural perlite (#3) up to an inch thick (the bottom most layer) depending on size of the container –the bigger container, the thicker the layer. Cover the perlite with activated charcoal. Fish aquarium charcoal or horticultural charcoal from the nursery is fine, but NOT charcoal briquettes. The charcoal layer just covers the perlite. Now add soil. Slope the soil from thin in the front to thicker in the back. You can also add wood, sticks, and rocks to make interesting landscapes. They should all be sanitized in the dishwasher or boiled or microwaved until sterile. After placement of soil, rocks and sticks are ready to plant. Place larger growing plants in the center and rear and small vines up front.
Your container should be sealed either with “cling tight” plastic wrap or glass. I prefer glass for most applications.

While terraria can grow in window light, especially north light, it is not optimal for most plants and they will grow slowly. You can’t place terraria in direct sunlight or the plants will “cook” because closed terraria can’t dissipate heat that rapidly. The old standard for light sources is fluorescent tube fixtures, but they have been supplanted by Light Emitting Diode (LED) technology. Grow-light LED fixtures are expensive, but provide some performance differences. Terrariums are not crops and we don’t want them to grow too fast so find an affordable light source that works for you. LED sources are nice because they are not bulky and do not add large amounts of heat. A bit less light or less optimal wavelengths of light are ok because we want to sustain plant growth for a long time, not grow the plants to the edge of the container real fast and have to prune or start over. The Costco brand shoplight LED fixture is perfect, but it is four feet long. Smaller LED fixtures would be appropriate for smaller containers. The Costco fixture is perfect for a 60 gallon fish tank. White light works well and looks best. Red and blue LED fixtures change the way we see the plants and are not best for viewing. Light should come from above so plants will appear to be growing normally. If the terrarium is placed near a window it will need to be rotated to keep plant growth even.

Moisture is critical in terraria. The growing medium should hold a shape when squeezed but not be saturated when you plant. After the terrarium is planted, you can “water it in” with a dilute -1/4-strength fertilizer solution mixed into distilled water. Watering amounts will vary by container size. Water should penetrate soil to the depth of roots and some should enter the reservoir. No more watering is necessary again until some time later when plants have grown considerably—usually months later. I usually water the glass to clean it from the initial planting with a turkey baster. At some point in the future, months not weeks, the soil may dry as growing plants use up water. When this occurs, water again with another dilute fertilizer solution. Do not over water your terrarium or bad things will happen. Also resist misting or spritzing as this will cause leaves to rot and is not necessary in a sealed environment.

Pruning, Replanting and Maintenance
Some of your chosen plants may outgrow their space. Some like Ficus minima ‘quercifolia’ will just overgrow everything, the same can happen with common Sellaginella sold in nurseries such as S. brownii. You should plan on pruning back the plants and making cuttings or planting other terrariums with the prunings. Cut begonias below a node or along the rhizome. Rhizomatous ferns can be clipped or dug and planted elsewhere. If you have to remove a really big plant it will leave a hole. New sterilized mix should be added to fill the hole along with the new plant occupant. Removal of flowers, mushrooms (should they form) and dying leaves is important. They will cause rots on plants they fall on. Sticks are usually always a problem since it is very difficult to kill mushroom fungi living in them. Mushrooms are mostly non-toxic to plants, but they drop spores and these lead to rot on sensitive begonias and ferns. Clip back Begonia, Episcia Sellaginella, Peperomia or Ficus to prevent them from overgrowing other plants.

Recommended Plant List
If you can find them, here are some recommended plants for terrariums.
B. prismatocarpa
B. prismataocarpa variegata
B. versacolor
B. ‘Raja’
B. ficicola
B. exotica
Edanoya spp.
Humata parvula
Lemmaphyllum microphyllum
Microgramma spp.
Pecluma pectinata
Tectaria spp.
Quercifelix zelanica
Peperomia prostrata
Sininngia pusila and all its variants
Episcia spp. (there are many, I like the pink ones)
Saintpaulia (african violets-only miniatures)
Sellaginella erythropus
Sellaginella spp. (there are many kinds, S. brownii is most common)
Ficus minima ‘quercifolia’

California “Big Trees” under threat

It’s not my week to post on the blog, but this is a PSA for California residents. Having visited the Capitol grounds in Sacramento, I find it important to make others aware of the plans to remove a number of large and historically important trees for the purpose of building a parking garage and expanding the Capitol building space.

I’m not a California resident, so in a sense it’s none of my business. But I am an urban horticulturist, and an arborist, and committed to preserving trees especially in urban environments. These trees are irreplaceable unless you want to wait a few hundred years. The plans to “relocate” some of these large trees are probably not realistic given the size of the specimens.

More importantly, this is public space and the public should be actively involved in discussions. But the process has been secretive and under the radar of a public more concerned, and rightly so, about COVID-19 and all the associated fallout from the pandemic. But it’s not too late.

Please share this post with California residents who have should have a say in how their land should be managed.

For those Californians interested in supporting the effort to save the trees at Capitol Park and call for the development of a Park and Tree Management Plan, you can sign the petition at https://www.change.org/p/california-state-legislature-save-california-state-capitol-park.

More importantly, you should call AND write to your own California legistator at this website findyourrep.legislature.ca.gov, as well as the two Legislative leaders who can really pause the project and guide its re-planning:
Senator Toni Atkins, President pro-Tempore of the Senate, 916 651 4039 and senator.atkins@senate.ca.gov. UPDATE: This email does not appear to work. Try using this form.
Assembly Member Anthony Rendon, Speaker of the Assembly, 916 319 2063 and speaker.rendon@assembly.ca.gov

Update on our bare-rooted perennial garden

Our south-facing pollinator garden.

Two years ago I installed a pollinator garden in early July. This goes against my recommendation to install plants in the fall, when roots have longer to get established and less stress is felt on the rest of the plant. But I wanted to see what would happen if I was careful to mulch well and keep it irrigated. Oh, and did I mention I was going to root wash every one of them? (Be sure to look at that process in the link from 2018.)

I reported on progress last year, and this year shows even more vigorous growth by nearly all the plants. Two of the three ‘Bandera Purple’ lavender died over the first winter, as they were marginally hardy (USDA 7-10) for our area. One straggler remains in the lower right hand corner of the photo below. The Agastache ‘Acapulco Red’ and the Verbena ‘Homestead Purple’ were planted near the front of the beds on both sides and while they survived the first year, they are now gone. My guess is that our cold snap in February 2019 wiped out those plants that were in less protected locations. Perhaps we’ll fill those spots in later with something more cold hardy, or just let the escaped Viola tricolor continue to colonize bare spots.

Overall, the garden is wildly successful in attracting hummingbirds and a variety of native bees and other insects.

The southwest garden is being colonized by violets that have hopped out of a nearby container. Wood chip mulch keeps the soil cool and moist.
The southeast garden with its invading strawberries (soon to be relocated). The tiny lavender in the back right corner is a rescue plant.

I still have a little work to do – I’m relocating the strawberry adjacent to the southeast garden so it stops invading the perennial bed. But after that I’m calling this garden finished.

Summertime pruning

Summer is a time of bounty in the home garden. During June, July and August the majority of small fruits ripen on home orchard trees. Plant health care is important to consider in advance of summer bounty. Careful dormant season pruning, dormant sprays, mulching and care helped to produce a nice harvest. As the fruit comes off the tree, some summertime options are available. This is a time when some limited summer pruning can be done to manage the physiology and growth of many fruit trees. Even some citrus will benefit from careful summer pruning.

Summertime brings a harvest bounty for many home gardeners, and with it an opportunity to modify tree growth with pruning

One obvious reason to prune in summer is to repair broken and remove dead branches that may have occurred from excess fruit weight or other injuries. Breakage is common in peach, plum and apples if fruit loads are not thinned earlier in the season. Cut the broken branch from the stem it attaches to with an angled cut that leaves the branch collar intact. Do not cut branches flush with the stem they were attached to. Many years ago the myth of flush cuts for shade trees was found to permanently damage trees, but flush cuts are often still practiced on fruit bearing trees. Flush cuts allow decay organisms to enter trees leading to heart rot and other kinds of wood decay.

Sporophores or fungal fruiting bodies indicate the presence of wood decay in trees. Usually be the time sporophores are showing wood decay is extensive in the tree.

Another myth that persists in home fruit orchards is painting wounds with a ‘sealant’ or ‘protestant’. There is no reason to paint cuts. They do not limit the progress of decay or prevent decay from forming behind the paint. Pruning paints do not promote “healing” or callus formation to close the wound. There is some thinking that pruning paints may even accelerate the process of decay formation. So throw away the black tar, it has no practical purpose in support of pruning.

Pruning paints are a relic of past horticulture traditions. They have no place in modern arboriculture or pomology

While pruning paints are no longer used, paint has other functions that can be helpful. If a large branch was removed from a tree, sometimes the remaining branches may require protection from sunlight. Apples and other thin-barked trees (citrus, cherries, etc.) are very susceptible to sunburn. If branches that were previously shaded are suddenly exposed to high light levels, the bark can be destroyed leading to sunburn cankers and entry of disease-causing fungi such as Botryosphaeria spp. If repair pruning exposes a large gap in the canopy, it is appropriate to apply white wash or diluted white latex paint to exposed branches in order to protect them from bright sunlight. The most severe damage occurs on southern and west facing branches. Sunburn is one of the leading causes of abiotic damage and a predisposing factor for disease such as stem and branch cankers in apples.

Fireblight is another common disease on pears and apples and develops after bloom. Pruning out fireblight affected twigs helps to arrest disease progress. Finally, bacterial canker can be devastating to Prunus (plum, cherry, peach, nectarine and almond) in parts of the country with warm summer rains. Immediate removal of bacterial canker affected branches is necessary to prevent permanent damage to the tree. Tools used to remove cankered branches should be sanitized by flame (torch) or with disinfectants. Canker diseases are active in the warm summer growing season. Cankers can be caused by bacteria or fungi and should be dealt with as soon as symptoms are noticed. The earliest symptom of an active canker is slowed growth relative to other branches on the tree. Slowed growth results in smaller leaves and fruit and fewer leaves. Affected branches seem more open and just look “weaker” than their healthy counterparts. Slowed growth is often followed by wilt, leaf drop and eventually necrosis or death of the branch. It is best to remove diseased branches early before the organism spreads to the main stem. Since symptoms occur when leaves are on, summer pruning is the best approach to remove cankered branches. Regardless of where or when damage occurs, using correct pruning practices should be adhered to.

Cankers kill branches in fruit trees, they can be caused by either bacteria or fungi. Here Botryosphaeria dothidea has killed a branch in this apple.

Healthy growth on the tree above but thin, weak, small leaves on the tree below indicate a developing branch canker.

Pruning is used most widely on fruit trees to dwarf them so that fruit is produced at a height convenient for harvesting. Pruning creates two universal responses that apply to all woody plants:

I. Pruning is growth retarding. The part of a tree pruned will grow less than the unpruned part. Or, a pruned tree will grow less than an unpruned tree.

II. Pruning is a bud invigorating process. A pruned tree or branch will have more of its buds released to grow compared to the unpruned branch or tree where many buds remain in a dormant state.

The more a tree is pruned, the less its roots and stems will grow. Even though the more a tree is pruned the more latent or axillary buds will be released to grow, it will not be able to make up for the lost leaf potential of the unpruned tree. The pruned tree has reduced photosynthetic capacity, makes less energy and will grow less overall. The thing that is not very clear is how the timing of pruning affects the basic processes. In his review, Chandler makes clear that pruning in the dormant season will retard the growth of apples less than if they are pruned in the summer. Summer pruning also significantly reduces the growth of roots compared to dormant season pruning. Removing leaves in mid-summer or after all shoot growth has stopped (summer rest period), removes photosynthetic capacity and reduces stored energy in the tree, thus retarding growth overall. While buds may be invigorated and new summer growth may occur, this rarely makes up for the tissue lost and still results in growth reduction.

Summer pruning does not result in more fruitfulness the following year, and in apples does not increase the number of spurs formed for fruit formation. Summer pruning can open the canopy and allow branches to form lower down that are useful for easy harvest. The effect of summer pruning on next year’s fruit quality is uncertain. Summer pruning can accelerate the ultimate scaffolding or canopy shape for the mature tree.

Pruning citrus after harvest, during the warm season can affect fruit size in the following year. This may be due to fruit thinning as some citrus have green fruit formed by summer that ripen in winter or spring. Summer pruning removes fruit and remaining fruit can grow larger.

Summer pruning of fruit trees before fruit harvest increases light penetration into the tree and can increase color development of the fruit. Pruning must be done cautiously to avoid excess light penetration and sunburn to scaffold branches and resultant canker diseases. Summer reduction pruning is most often accomplished by pruning the ends of branches back to other branches or twigs. Removing about one half the current season’s wood (on a given branch) will achieve objectives usually without causing excessive light penetration into the canopy. Not every branch need be pruned but an even approach, removing branches consistently around the tree, will maintain form. No more than 15-20% of the canopy should be removed by summer pruning. On some vigorous growing trees such as Persian mulberry, pomegranate, or some peaches, heavier pruning doses can be used. Pears, apples, plums and cherries require less pruning and cuts should be made to preserve spurs and other fruit bearing wood. Some varieties of cherries can become ‘over spurred’ and thinning cuts to remove excess spur wood can sometimes be helpful to limit production and increase fruit quality in the next season.


Chandler, W. H. 1923. Results of some experiments in pruning fruit trees. Cornell University Agriculture Experiment Station bulletin 415.

Ingels, C. and P. Geisel. 2014. Fruit and Nut Tree Pruning Guidelines for Arborists. University of California Agriculture and Natural Resources publication 8502. http://anrcatalog.ucanr.edu

Saure, M.C. 1987. Summer pruning effect in apple—a review. Scientia Horticulture 30: 253-282

Tools, tips, and terrible traditions for raised beds – Part 3

Young vegetables thrive in mulched, weed-free raised bed.

Over the last couple of months I started a series on raised bed gardens, focusing on materials and preparation. In this final installment, I’ll focus on maintenance activities to avoid in your raised bed systems and remind you of three things you should always do.

Terrible traditions

We’ll start with some practices that damage soil structure and function (GP John Porter discussed this in much detail a few years ago). Tilling, once the mainstay of soil preparation for crops, is increasingly found to cause more damage than good. Grinding the soil into a material with the texture of coffee grounds might look pretty, but it’s devoid of the ped structure that allows water and gas to move through easily. It also increases microbial activity by bringing up microbial spores, which release carbon dioxide to the atmosphere as they digest whatever organic material is there. And tilling will increase the likelihood of erosion and compaction.

Soil runoff from tilled, unprotected field. The same thing will happen in your garden. Photo from Wikimedia.

This is the opposite of what gardeners should want: an optimal soil has natural structure which might look messy but allows for good drainage. It’s also more resistant to compaction and erosion, especially when it’s protected with mulch (more on this later).

Speaking of drainage, don’t be tempted to add gravel or some other coarse material at the bottom of the bed. The change in soil texture creates a perched water table, which makes for a soggy planting bed and optimal conditions for soil-borne diseases.

Classic experiment that demonstrates water does not move easily through different soil textures.

While we’re talking about unnecessary or harmful additions to your raised beds, let’s not forget the annual addition of compost or other rich organic material. This is a holdover from old agricultural practices and is not warranted unless you have an organic material deficiency. Without a soil test, you don’t have a clue about what your soil has or what it needs. The problems associated with routine amendments are discussed in this peer-reviewed fact sheet, and are exacerbated by the tillage that is often the means to incorporate compost. Likewise, don’t add fertilizers and pesticides unless you have conclusively identified nutrient deficiencies or pest issues.

If your nutrients are off scale, don’t add any fertilizer!

The last tradition I’d like to see shelved is growing cover crops. This practice originated in the management of agricultural fields, which were otherwise left bare after harvest. Outside of producing some kale or other winter vegetables, what’s the point of planting a cover crop in your garden, when you can protect the soil in other ways? Cover crops require water and nutrients, which eventually will need to be pulled or incorporated. You are forcing your soil system to continue to support plant growth and be subjected to disturbance with the planting and harvesting of the cover crop. Why not let the soil rest over the winter with a nice blanket of mulch? Give it a chance to regenerate its nutrient load while being protected from unnecessary disturbance.

A great arborist chip mulch has leaves or needles as well as wood.

Three tips

Two of these tips have been discussed many times in this forum, so I’ll direct you to longer discussions of soil testing and mulching. Mulching is not just important for protecting the soil bed after the growing season, but should be used on actively producing beds. A deep, coarse organic mulch will promote water and air movement, moderate soil temperatures, reduce weeds, and provide a slow feed of nutrients throughout the season. You’ll have to wait until your seeds are up to apply it, of course, but try to avoid bare soil as much as possible.

Though you’ll need to leave the soil bare during seed germination, you can still protect unplanted areas of the bed with mulch.

Soil testing is really crucial for any garden, but perhaps most important in vegetable gardens where harvesting may decrease key nutrients over time. It will also guide you in identifying potential heavy metal problems. The money you will save in not buying unnecessary fertilizers and other amendments will pay for many soil tests.

There is so much great information in a soil test that will help you make decisions about what to add – and what to avoid.

Sometimes you will need to add material to your existing beds if you are not using a natural soil. Soilless media (deceptively marketed as “potting soil” though no soil is to be found) will decompose and settle over time, leaving you with a sunken soil system. You will need to add more of the same sort of media to the beds, making sure you mix it in thoroughly to prevent a perched water table. (This is why you might consider using a natural soil and avoiding this annual chore – because a natural soil will not subside over time.)

This recommended planting media will decompose down to the oyster shells and lime over time.

The weed apocalypse

I have been hiding from COVID-19 in Arizona, but I had to return to Ojai, Ca because I was “noticed” by the local fire department to abate my weeds. I returned to find the Weed Apocalypse (WA 2020). Late spring rains were spaced nicely in California supporting rampant weed growth. So, why did this happen? What can I do about it now? How could I have better prepared for WA 2021 next year?

The Ojai “Weed apocalypse”. This is what happens when you leave and do nothing in your garden for two months.

In May, the days are getting noticeably longer and moving closer to the longest day of the year (June 20–the summer Solstice). Longer days add more photosynthetically active radiation and put plants on a rapid growing phase at this time of the year. If water and soil nutrients are not limiting, this is the fastest growth period for most plants. Weeds have the unique quality that they will grow faster than many garden plants even with less resources. When resources are plentiful, they grow  faster still.

One way to prevent the weed apocalypse is to deteriorate the weed seed bank . The “weed seed bank” (WSB) is the amount of seeds stored in soil that are viable. The seed bank is restored each year when weeds set seed and drop them on or into the ground. In some cases the seed bank also includes plant parts such as Bermudagrass (Cynodon dactylon) stems and rhizomes (underground stems) that can lie quiet but, once sufficient moisture is available, they spring into life! So once the weeds set seed, just “whacking” or mowing and leaving the mulch behind does not usually solve the problem as viable seed is added to the WSB. Annual weeds can be reduced substantially if they are controlled prior to seed set.

Weeds are sneaky buggers. They imbue their progeny with germination inhibitors or dormancy factors that delay germination. Some seeds complete their maturation even when they have been cut away from the main plant. This is why weeds always seem to be there for you. When dormancy factors wear off, or are washed away seeds will germinate. So after a strong rain event or irrigation weeds emerge that were previously dormant. Some of the seeds remain dormant in the WSB as a back up opportunity to grow. In the case of Slender wild Oat, Avena barbata, it has two maturation ‘stages’ that take advantage of both early spring and late fall rains, with seed ripening at both of those seasonal times. Light is also necessary for many weeds to germinate. When weeds are removed by tilling or digging, new seeds are brought to the surface and may now germinate. Additionally, many weeds have the capacity to regenerate if the entire root is not removed. One tenacious weed, Field bindweed (Convolvulus arvensis), is known to regenerate from each node and root as deep as four feet. Cutting the plants into pieces makes more of them!

Weeds can be annual biennial or perennial . Some weeds such as Poa annua or annual bluegrass complete their life cycle (seed to seed) in only a few to several weeks, others grow for years. Annuals survive drought or cold winters as seeds while perennials as roots, tubers or dormant stolons or stems. Biennial weeds usually grow their vegetative body in the first year and reproductive structures in the second year, they are often rosette forming plants that grow close to the ground in the first season and develop tall stocks in the second. Knowing how to identify weeds helps to understand their biology and ultimately control strategies.

Many gardeners are herbicide averse. However, herbicides will often give the most economic and effective control of weeds. Some weeds like field bindweed are only well controlled with herbicides. Herbicides are broken down into two categories: pre-emergent herbicides and post emergent herbicides. Pre-emergent herbicides inhibit seed germination or kill emerging seedlings before they can develop. Post emergent herbicides kill weeds after they emerge from their seeds. Almost all weeds are better and more easily controlled at juvenile life stages. This is true for mechanical or chemical control. Regardless of how you choose to deal with the WA in your garden starting when weeds are small will give you a tremendous advantage.

Like all pesticides, herbicide labeling must be followed carefully to apply the right amount of product at the right time to the target weed (which also must be listed on the label). There are some amazing herbicidal tools that can save hours of labor. Some drawbacks of herbicides are that they may be expensive, may require multiple applications, require equipment to apply as well as personal protective equipment. Herbicides can be selective or broad spectrum. For instance, Fluazifob-P-butyl (active ingredient of Fusilade II) will control warm season grasses in many ornamental broadleaved plants. This is immensely useful since you can apply Fluazifop-P-butyl “over the top” of a flower garden and free it of bermudagrass (Cynodon dactylon) without harm to your ornamental garden plants or other non-grass landscape plants. Other herbicides containing plant growth regulators such as 2,4-D are broad-spectrum and will kill or harm many kinds of broad-leaved plants in turfgrass without harming the turfgrass. There are also some broad spectrum contact herbicides made of soaps or acids that will kill both broad leaved and grass weeds on contact. While these products do not have systemic action they can be very effective on both cool and warm season young weed seedlings. Herbicides when used carefully and following labeled instructions can save hours of hand weeding labor.

In my own yard I have chosen not to use herbicides because I have so many plants that are sensitive to the kinds of products I would need to use. I am pretty much down for other types of control. This month my city council decided to ban the use of gasoline powered lawn mowers–my chief weapon for the WA! We took a chance and used it anyway because our weed issues are so bad. As mentioned earlier the best time to use mechanical control of weeds is when they are in the cotyledon or two leaf stage of growth. A quick attack with a scuffle hoe will wipe them out. When they grow to adult weed size, larger and larger machinery become required.

Once perennial weeds such as bindweed grow a bit they become impossible to control with hoeing because they will grow back from roots. String line trimmers are used for weeding in many apocalypses but have their limitations. Bits of plastic trimmer line break off and pollute your landscape. Biodegradable plastics are usually used, but the idea of littering your yard with plastic bits is bothersome. Limiting the use of oil consuming machines is a great idea, but using battery powered machines has limits. Buying extra batteries so you can destroy while you charge is helpful.

Hand pulling is a great way to release pend up stress (of the human not the weed), get exercise, and rid the garden of apocalyptic pests. However, for some weeds like yellow nutsedge (Cyperus esculentus) you will only increase the problem as nutlets are released from dormancy when you pull the “mother” plant. By the time you see the emerging nutlets they have formed more nutlets so you can never get ahead of the problem. If you decide hand pulling will work, irrigate the day before you want to weed and they will come out much easier.

Mulching with fresh coarse arborist chips is a great way to prevent annual weeds from getting the light they need to germinate. Mulches also break down to improve soil. We have been mulching for a couple decades on my driveway but have not added any mulch for a few years. The broken down mulch and improved soil are now the most apocalyptic weed garden. If you use mulches for weed control fresh chips need to be applied at least annually in a thick layer to be effective. Also constant application of mulches can make soil! This soil builds up without you realizing that the root collar of perennials or trees may be getting buried. If you mulch consistently around trees be sure to keep the root collar exposed.

Not all weeds germinate in the early winter. There are winter and spring or summer germinating weeds. The differing timing of their emergence can happen unexpectedly. Just when you thought you had weeds in control, another set seems to appear requiring your attention. Look for summer emergent weeds when night temperature lows are above 60F.

Using an old glass shower door to solarize the soil and kill weeds. Note some yellow nutsedge is surviving near the edge of the doors.

Solarization is another way to kill weeds. This is the old greenhouse effect used as a weed weapon. Clear plastic laid on the soil surface and sealed at the edges will if exposed to full sun heat the contents to the point of their death. The solarization effect does not penetrate deeply into soil, so if perennial weeds are solarized, they may survive and regrow from root pieces. If you want to try solarizing your weeds purchase thick UV resistant plastic otherwise you will have bits of plastic everywhere as the sun breaks it down into pieces… Warning, this does not work with Field bindweed! In my own yard I have used old glass shower doors to solarize the soil.

Finally if all else fails and the WA is bearing down, you can just eat them. Many weeds are edible and can make good food. Nettle, Sonchus (sow thistle), purslane, dandelion and many of the Mustard family are edible at various stages of their development. Some folks have even collected mustard seeds and made their own condiments. Of course, you should always exercise caution when consuming wild foods. Some contain toxins or other chemicals that individuals may be sensitive to. The Sow thistle and wild lettuce (Lactuca spp.) contain latex which many are sensitive to. The stinging nettle has hairs on its surface that contain an irritant (oxalic acid) that causes skin burning and welts. Others, such as black elderberry may contain cyanide alkaloids in the green tissues-stems, fruit and other parts. Research the risks of consuming or contacting some plants before attempting to eat or handle them.  There is hope, because even the nutlets of one of the worst weeds (yellow nutsedge) are edible…

A tale of two weeders – lessons in managing aggressive, perennial weeds

Choose your weapon in your war against weeds!

Nearly every afternoon for the last two months, curious drivers have noticed two people meandering through a pasture, following a narrow pathway formed by two lengths of string tied to fenceposts. It’s us! Thanks to COVID 19, we are no longer able to go the gym for a workout so like many other gardeners we have put that unexpended energy into our gardens and landscapes. And in this case, cattle pasture.

The herd

The lettuce from hell

My family has raised free-range, grass-fed beef cattle for over 50 years, and with our move to the family farm in 2017 we now oversee much of that business concern.  Managing pasture weeds is just one of the battles associated with providing quality browse for the cattle. Inedible plants like bull thistles (Cirsium vulgare) and tansy ragwort (Senecio jacobaea) are taprooted species, easily removed with a single weeding. But not Canada thistle (Cirsium arvense), colorfully and accurately described as the “lettuce from hell” thistle. Though it’s highly nutritious, the prickles are so unpleasant to sensitive muzzles that cattle avoid it.

This aggressive, herbaceous perennial (native to Eurasia, not Canada!) has an extensive underground root system, consisting of thick, propagative roots which give rise to more roots (which grow vertically and horizontally), and shoots which pop up seemingly everywhere. They do NOT have rhizomes, and they do NOT have stolons. Apparently, Canada thistle has a unique, hellish morphology allowing it to spread rapidly – 6 meters per year in the U.S. – if not managed (you can read more about this topic here).

Applying plant physiology in the field – literally

But there is a weakness in this aggressive root system – and that weakness is the need for resources provided by the aboveground thistles. The perennial root system stores resources over the winter, then pumps them into new shoots in the spring. This is the chink in the armor – these shoots are USING resources, not providing them, until they slow their own expansion. So the trick is to remove the shoots as soon as they appear, forcing the roots to expend more resources to make more shoots, and so on.

So this is why we are in the field, every day, removing those shoots, systematically clearing areas and then repeating in another week or so as new stems appear. And it’s working. But here is the lesson we are learning that gardeners can apply to their own gardens and landscapes.

Dueling weeders

We have two weeding implements: the “winged weeder” and the “uproot weeder.” The first is my choice, though it is NOT a solely a “stand up tool” for this purpose. My husband prefers the uproot weeder, which twists and pulls out a core of soil along with the root. I don’t like this latter method, as it creates a hole through which sunlight can penetrate, activating both photodormant seeds and stem regrowth. But to each their own.

However, we found another reason that the coring method doesn’t work well: those cores can stay moist and guess what? The stems generate new roots, and left alone could easily re-establish if conditions were cool and moist. Just what we need.

Done properly, this is a quick and effective means of removing the entire root crown of new plantlets

My preferred method, using the winged weeder, is to break the underground stem off as deeply as possible and then work it out as seen int he video. For this you need protective gloves, but not thick ones. You need to be able to feel what you’ve got a hold of.

These gloves are thick enough to protect against most thistle prickles, but thin enough so you can feel what you are holding

Hold onto the base of the thistle gently and as you work the weeder under it move your fingers down BELOW the crown. It feels like a tough bulge and you want to hold onto the smooth stem below it. Otherwise it is likely to break off, leaving the crown viable. You will hear, and possibly feel, a satisfying pop as you dislodge the stem from the underground system. Pull it up carefully. The remaining hole is tiny, and easily covered by pressing on it gently with one’s boot.

My chicken boots close the small holes left by the winged weeder

The advantages to physical removal of perennial weeds

  1. I’m getting out into the fresh air and have lost more weight in the last month than I lost going to the gym in the past year.
  2. I’m controlling a noxious weed population without the use of chemicals.
  3. I’m developing a technique that can be applied to ANY herbaceous perennial in ANY garden or landscape. That’s the great thing about plant physiology – the pattern of resource allocation is not species dependent. Think horsetail and bindweed, for instance.
Our battleground – the enemies are well hidden

Do keep in mind that perennial weeds are perennial problems! We aren’t EVER going to have a thistle-free field, but it will become a more manageable problem as the infestation will have been dramatically reduced this year. I’ll try to do some updates over time.

Tools, tips, and terrible traditions for raised beds – Part 2

Native topsoil – with native rocks.

Last month I started a series on raised bed gardens, focusing on materials and designs. Today I’ll mention some of my favorite tools and materials for putting everything together and getting ready to plant.

Getting your soil ready for raised bed use

Tools and materials: shovel, wheelbarrow, tarp, soil screens

If you’ll recall from my previous post, I like using native soil for raised beds (assuming it is not contaminated with heavy metals or other undesirable chemicals). We have glacial till soil, which means it has a LOT of rocks of various sizes. The bigger ones are easy enough to lift out, but what about all the other ones?

First, realize that SOME rocks are no big deal. In fact, they are important in reducing soil compaction. Finely sieved soil, especially clay soils, will be more prone to compaction than a soil with small pebbles scattered throughout. But the larger rocks are a nuisance.

Small rocks in your raised beds won’t interfere with vegetables but help prevent compaction of heavy soils.

For the first pass through, I have found a plastic crate to work really well. It’s lightweight and the holes are large enough to let soil move through quickly, while retaining larger rocks. I like the milk crate size as it’s easiest to handle. Just set the crate in a wheelbarrow or on a tarp, fill it full of rocky soil, pick it up and shake.

These plastic crates are sturdy and easy enough to lift when filled with soil.

The rocks left in the soil for the most part are easy to work around, and you can always pick out the larger ones as you go (my personal choice). Or if you want to give it another screening, you can build wooden frames with different gauges of hardware cloth, or chicken wire, to remove more of the rocks.

This is a simple soil screen built with 2×4 boards and hardware cloth.

This is a time-consuming process, but the benefit is that you don’t have to top off your beds every year. Your native soil will not be subject to high levels of decomposition and subsidence as will many commercial topsoils with their high organic content.

When you’re ready to fill your beds, be sure to add more soil than you think you will need. It is going to settle, and you may need to add a little more the second year to bring it back to your desired level. But you shouldn’t have to add any more in the future.

Water and time will help soil settle to its final level.

Throughout the soil preparation process, be sure to work when the soil is dry, or no more than just damp. Working wet soil is difficult, and wet soil compacts.

But what about heavy clay soils?

Unless you’ve done a soil texture test, you really don’t know what you have. So before you take another route, make sure you really have a heavy clay soil. If it’s just compacted, then proper mulching will solve that problem too. If it’s truly a heavy clay – let’s say over 40% – then yes, this soil might not be best for a raised bed. In that case, I would suggest finding a different topsoil mix, where clay is no more than 30%. Lay down a membrane to keep this soil separate from your native clay soil. Your raised beds will now function more like giant containers, and you will have to make allowances for drainage along the sides of the beds.

You can estimate how much clay you have in any soil type using this chart.

Your beds are ready – how to keep them that way before planting

Tools and materials: coarse organic mulch, wheelbarrow, mulch fork or shovel, rake, soil temperature probe

A mulch fork will make your life so much easier!

Once your beds are filled, it’s important to get them planted as quickly as possible to prevent continued erosion of that bare, loose soil by wind and rain. If you aren’t immediately planting, then you need to cover the soil with a protective mulch. The only choice you have, if you wish to keep your soil environment hydrated and aerated, is to use a coarse organic mulch. Sheet mulches are not advised since they will interfere with water and air movement. Even if you don’t have plants in the soil, there are microbes and beneficial animals that need a constant influx of oxygen and water. A coarse organic mulch, installed to a depth of at least 4 inches, will facilitate water and air transfer and also keep weed seeds from germinating.

Keep unplanted beds protected with coarse organic mulch.

If you’ve been following my posts over the years, you already know I’m going to recommend using a wood chip mulch. Its benefits to soils and soil life is well established and it is easily moved once it’s time to plant. But you can use pine needles, straw (not hay!), and other coarse organic materials for this purpose. Fine textured organic materials like compost should never be used as a mulch, as thick layers of compost are more restrictive to gas and water movement and also facilitate weed growth. Save compost for a thin topdressing when your soil anywhere on your property is in need of organic matter, and be sure to cover it with woody mulch to keep those weeds out.

This thermometer will help you plant seeds at their optimum time.

While waiting for the right time to plant, consider purchasing a soil thermometer. They are inexpensive and easy to use.  Good publications on growing vegetables will tell you what the soil temperature should be when you plant: planting too early can lead to reduced seedling survival. And while you are waiting you can install a rain gauge nearby, so you can monitor irrigation needs throughout the growing season.

What’s next?

Next time we’ll discuss the dos and don’ts of raised bed maintenance during the growing season and before planting the following year. Most of these practices are adaptable to traditional vegetable gardens, so be sure to check it out!

Sustainable gardens?

Natural ecosystems like this woodland in the Chiricahua national monument in Arizona maintain species density over time because the inputs are consistent with the plants that live there and the outputs are recycled.

The concept of sustainable agriculture is not new and the idea of sustainable gardens is likely just as dated. Sustainability as a concept can be applied to soil, farms, gardens or life in the biosphere. The second law of thermodynamics says that all systems tend toward thermodynamic equilibrium where there is maximum entropy (randomness). In functional ecosystems equilibrium is achieved to a degree, and plant, animal and other species are at stable levels. Ecosystems evolved over millions of years to develop connections between individuals creating support networks, predator-prey cycles and nutrient cycles. Inputs are adequate to “sustain” the system and outputs are all recycled. When we create our gardens we are setting up a system that we maintain through inputs and we appreciate the outputs, and it keeps us interested and involved in pushing back the entropy.  In almost all cases gardens are not natural systems and if left untended will become more random, weeds will grow, poorly adapted plants will be overrun and the balance will change to something matches the inputs and outputs of a sustainable system as dictated by the location/climate/soil, etc. 

Sustainable gardens rely on low inputs with maximum outputs. The plants grow over time with little maintenance, pest pressure, fertilizer or water…

The key to a sustainable garden is understanding inputs and outputs and the flow of energy in your system. The reason I like pristine ecosystems is that I don’t have to add inputs to them to take part in their beauty. As long as I don’t interrupt what is going on by breaking connections between organisms unwittingly, the system is self sustaining. Imagine the garden of Eden that always bears fruit and flowers with no inputs from you the gardener. You just walk into the garden and bask in it sbeauty occasionally eating some delicious item you find there. Well we all know that our own circumstances are far from this reality. Getting a garden to provide the aesthetics (beauty) or food (both outputs) often requires us to provide heavy amounts of inputs. Inputs are mostly energy in the form of kinetic or work energy of the gardener, hydrocarbon energy in the form of electricity to run gadgets or fuel to power mowing or clipping equipment, or fertilizers which may be derived from fossil fuels or from the sun as by products of plants. Energy is also the main input into plant systems that may be in your garden. Light contains the energy for their growth. Finally cash money is easily converted to all forms of energy. You can purchase labor, fertilizer, any number of garden amenities bypassing the personal output of your own kinetic energy. Or you can garden smarter and avoid large energy inputs by creating the sustainable garden…

So how do we get a sustainable “Garden of Eden”. First, recognize that not all gardens are the same; they have different functions and purposes. Some are for aesthetics only. Some are for food production. There is a wide body of research that shows gardens and green environments sustain our health; both physical and mental (this would be an output). So a garden is not sustainable if it does not appeal to you or produce enough food or sustenance to justify the inputs. Gardens are like checking accounts in a way; we put in deposits (inputs) and we withdraw benefits (outputs). If the amount of inputs generate the required outputs the garden is sustainable. So since money converts to energy and labor the more money you have the more complicated and detailed your landscape or garden can be, but entropy will have its way with this kind of garden with out extensive inputs. Water thirsty plants, greenhouse cultivation, weed and other pest control, poorly adapted plants and wide swaths of turf all require greater inputs.

Hardscape such as walls, patios, pathways, fences etc. do not use many inputs over time, require no water or fertilizer, pruning and can be very low kinetic energy (maintenance). If done well they add aesthetic value to the outputs

-Increase Hardscape
Hardscape includes landscape elements such as walkways, walls, boulders, patios, sculptures, small out buildings etc. Since hardscape is not green or growing it uses no water, requires no pruning or other tasks to maintain. Installing strategic hardscape can improve the appeal and functionality of a landscape while cutting down on the sustainable square footage that you are maintaining. It is often wise to consult a landscape designer or architect to optimize the uses and functions of your garden.

-Mulch Mulch Mulch
Fresh mulch from chipped tree trimmings is essential for a sustainable landscape/garden. Fresh wood chips are the best source of energy for microbes when used as a surface mulch. Wood chips layered four inches thick over bare soil will improve many aspects of soil, essentially making the soil more “sustainable” for your garden by conserving moisture and adding nutrients over time (for more on mulch see the paper by LCS referenced in the GP site). Fresh wood chips are best around perennials but can also be used as walkway material in vegetable gardens, as mulch around berries and fruit trees and around perennials like rhubarb and asparagus. A well mulched garden uses less water and, in time, requires little or no fertilization.

Mulch is essential to the sustainable landscape. this aloe garden was heavily mulched initially. Its rocky soil was improved and weeds reduced thereby reducing labor energy inputs

-Maintain Light
Sunlight is the main energy input into your garden and is necessary to sustain the plants growing there. Plants that are adapted to full sun when shaded out by growing trees, shrubs or other tall plants become disease prone, produce less fruit, and are less attractive. To keep vigor up, ensure that plants get enough sunlight by pruning back intruding branches from nearby trees or other shade providing plants. Remove trees that have outgrown their space in your garden and replant with size appropriate specimens.

-Use Enduring Plants
Grow what grows well for you. Time spend on poorly adapted and fussy plants will decrease the sustainability of your garden and increase the necessary inputs of time, labor and energy. For oranamental gardens use enduring plants. Flashy annual plants look good for a few months but require replacement regularly. Long lived perennials used as specimens in a garden add value over time with little care, pest control or fertilization. I term these ‘enduring plants’. Enduring plants grow slowly but live long lives. For those who grow food vegetable gardens are a necessity and plants are mostly annual, however perennials are also an option. Rhubarb is an enduring perennial, berry vines, fruit trees, asparagus and grapes provide food year after year with low maintenance relative to annual crops. Keep fussy, pet plants to a minimum, and in containers so they can be moved when necessary to accommodate their needs.

Enduring plants live long lives, add value and are low maintenance additions to landscapes

-Recycle Reuse
Gardeners spend a lot of energy clipping, removing and throwing away unwanted yardwastes. Consider composting trimmings and weeds and recycling these materials back into the garden. This reduces energy spent processing these materials and decreases the cost of purchasing organic materials for your garden. Lawn clipping, leaves, and tree trimmings (when shredded) can make a high quality compost if carefully produced. Many extension offices have publications on home compost production.

Study of natural ecosystems provides an interesting window into sustainable landscapes. Plants grow with each other in a balance or harmony that results in a sustainable landscape. In these natural settings, litter accumulates under tree canopies (think mulch in your garden) providing a continued source of biological and mineral motivation for soil to be productive. Annual plants grow each year where sun is abundant and shade loving perennials inhabit the understory of trees. The right plants in the right place create a beautiful environment.