Organic insecticides that will get you high

papaversgetyouhigh

Plants are crazy chemical factories, synthesizing a whole host of compounds that we use for flavoring and dye and medicine and… getting high. And why are they making all these chemicals? They’re certainly aren’t doing it for our sake… no, quite often they’re trying to kill something – usually insects — and it just so happens that sometimes our brains and bodies react differently enough that instead of killing us, they make us high. Well, and sometimes they kill us too.

Nicotine, the addictive force behind cigarettes, is a potent natural insecticide. if you’ve heard of neonicotinoids, the pesticides that some are concerned with in relation to honey bee health, they’re synthetic insectides based on the chemistry of nicotine, and like it, they effectively kill insects. No word on if anyone has tried smoking them yet.

Opium poppies are full of a thick latex loaded with chemicals like morphine and codeine, to name a few, which are obviously used as pain killers, and of course opium is taken directly or processed into more potent forms like heroin. The research on these chemicals indicates multiple possible functions, acting to prevent damage by herbivores (like insects), and possibly also acting to prevent pathogen damage and maybe even a more structural function in strengthening cell walls in response to damage  (see: http://pubs.acs.org/doi/abs/10.1021/np020583l) I didn’t find any research looking directly at opium’s ability to kill insect pests. Probably because that type of research is usually aimed at a practical solution to pest problems, and even if heroin proves to be a potent insecticide, I doubt anyone would issue and extension bulletin recommending you use it to control your whitefly…

But that lack of practical application didn’t stop a researcher from publishing a paper titled  Cocaine as a Naturally Occurring Pesticide in which they found that cocaine was highly effective in killing tomato hornworm! Organic growers, take note! Maybe THAT’S why organic tomatoes are so expensive at the farmers market…

In any case, it is fascinating to note all the interesting, sometimes useful, often dangerous chemicals that have evolved thanks to the on-going chemical arms race between plants and the things that try to eat them. We’re the accidental beneficiaries – and sometimes victims – of that very, very old battle.

You CAN grow it, but is it worth it?

As winter sets in here in Michigan, I’m seeing gardeners deploying winter protection. Like this, which I saw on a visit to Hidden Lake Gardens with some friends recently:

pinus contorta Chief joseph covered

Well. Isn’t that attractive? Come around to the far side, and you see this:

pinus contorta Chief joseph

Pinus contorta ‘Chief Joseph’ which is a stunningly beautiful conifer, green in the summer, this brilliant shade of gold in the winter. Sadly, those gold needles are also incredibly prone to turning a less brilliant shade of brown if exposed to too much winter sun and wind. Hence the ever-so-attractive sun-and-wind shade they’ve installed here.

Call me old-fashioned, but the point of a garden is to be pretty, and though you CAN wrap delicate shrubs in burlap or upend styrofoam cones over tender roses or even (yes, I’ve seen it) put little roofs over your hardy succulents to keep excess rain off of them, but is it really worth it? For me, if I have to put something ugly on my plants to keep them healthy, it isn’t worth it. In my garden, I’d lean towards something else I also saw on that visit:

Chamaecyparis obtusa Crippsii

Chamaecyparis obtusa ‘Crippsii’ No, it isn’t quite as stunning as the pine… but it will grow and not turn brown, with no fuss.

What about you? Are there plants you are willing to make your garden ugly to keep happy?

 

Infographic with a BIG grain of salt

Infographics can be great: They’re bright colorful ways to make sometimes complex concepts visual and easy to understand. Sadly, “easy to understand” does not necessarily equal “accurate” and they can also be extremely misleading.

Take this beautifully made image from National Geographic. It is an older image — first posted back in 2011, but it makes the rounds on social media from time to time, and popped up in my facebook newsfeed a couple days ago.

Look at it! Oh no! We’re loosing all of our vegetable genetic diversity!

Or not. First, it is comparing apples to oranges. This image looks a commercially available varieties in 1903 and compares it to the number of varieties in one specific center for preserving genetic diversity. What happens if we compare the same metric? If you look at the number of varieties in the National Seed Storage Laboratory, that was founded in 1958… so in 1903, at the top of the graph, the number for all these vegetables would be… zero. If you look at the present day, the current umbrella organization for all the US government funded efforts to preserve genetic diversity of crop plants is GRIN, (Germplasm Resources Information Network)  and if I do a quick search through that database using the keyword “tomato” I get… 9281 results. That is a pretty overwhelming improvement over 79 in 1983.

And what about commercially available varieties? To use tomato as an example again, in 1903, they found 408 varieties offered commercially. I just added up the varieties listed by just ONE seed company, Baker Creek Seeds, currently lists 287 different varieties of tomatoes. That is just ONE company. I have no doubt that if I added up all the varieties that are offered for sale in the giant pile of seed catalogs I get every spring it would be FAR more than the 408 on offer in 1903.

So… are we losing genetic diversity in our crop plants? Probably. There are lots of traditional varieties and land races that were never available commercially that have do doubt been lost, but to be honest, I think we’ve done a pretty good job at preserving the diversity. And certainly the USDA’s system of gene banks is an incredibly well run, impressive thing that deserves high praise indeed, for not merely preserving vast amounts of important genetic diversity but also working hard to characterize it and make it available to researchers and breeders so it can actually be put to work in the development of new and improved selections to try and feed the world.

So despite how colorful and easy to understand this infographic is, you don’t need to freak out about a massive loss of genetic diversity in our vegetable crops. Save that freaking out for all the wild species that have gone extinct or are about to go extinct thanks to habitat destruction and climate change world wide…

Get a handle on your microclimates

Practically the first thing a budding gardener (at least in the US) learns is their USDA winter hardiness zone. Based on average winter low temperatures, hardiness zones have many flaws but are still a very useful tool in figuring out what plants can and cannot survive your particular winters.

Right after learning about winter hardiness zones, we generally hear about microclimates – the idea that small precise locations within our garden may be, sometimes significantly, warmer or colder (or wetter or drier) than the surrounding climatic norms. The most pronounced producer of microclimates in most people’s gardens is their house – the sunny southern and western walls in particular can be markedly warmer than the rest of your yard. If you have hills, you also get frost pockets in low lying areas and warm south-facing hill sides.

But just how much warmer ARE your microclimates?  I used to live in a drafty, poorly insulated nearly 100 year old house which had VERY warm microclimates all around it because all the heat my furnace put out was rapidly leaking out into the outside world. Great for growing plants that normally wouldn’t take my winters, but oh, the heating bills! A modern, well insulated house leaks a lot less heat out into the garden. Over time in a garden, you can learn by trial and error just how far you can push growing tender plants in warm microclimates by planting things and watching them die or survive. But there is an easier and faster way to figure out your microclimates. Collect some actual data, getting firm numbers of how warm and cold different parts of your yard are.

20141104_130607

I’m heading into the first winter in a new garden, and getting ready to deploy a handful of cheap mechanical min-max thermometers. I’m placing one out in the open, the others against the south wall of a shed and other places I think should prove to be warm microclimates. Out they go, and after particularly cold weather – or just in the spring – I can check the different minimum temperatures they’ve recorded. A few degrees differences isn’t worth worrying about, but get to 10 degree differences, and you are talking a whole winter hardiness zone warmer.

In addition to comparing different locations in my garden, I also like to compare the actual temperatures I’m recording with those from local official weather stations (to do that, just go to www.weather.gov, enter your zip code, and then click “3 day history” on the right side of the screen). The zone map is created based on readings from weather stations like these, and if your particular yard is consistently showing temps warmer or colder than the local official readings (provided, of course, your thermometers are accurate), you should adjust your winter hardiness zone accordingly.

Finally, a min-max thermometer is a great way to test various winter protection methods. Tender plants can be insulated with a thick layer of leaves or (my favorite) cut conifer branches or even styrofoam boxes. How well do these protections work in your garden? Tuck a thermometer in with the plant before you cover it and then, come spring, check the minimum temperature it recorded against what you saw in the open air. Again, a difference of 10 degrees Fahrenheit corresponds to a whole winter hardiness zone warmer, giving you real actionable information about what you might be able to over-winter with the help of different sorts of insulation.

It is worth reiterating that minimum winter temperature is only one of a myriad of factors that go into winter hardiness, moisture, duration of cold, health of plants, and even summer heat matter as well, but winter lows are important, and it can be easily and precisely measured. So why not get some numbers on it so you can have a better idea of just what tender plants you can get away with in your various microclimates? A few thermometers is a lot cheaper than putting out a bunch of rare perennials and having them freeze out on you.