Late summer pruning: what happens, what won’t, and why

In the fall a gardener’s fancy lightly turns to thoughts of pruning (with apologies to Alfred, Lord Tennyson).  In particular, people worry that pruning too late in the summer or early fall will stimulate plants to send out new growth, which is then damaged by freezing temperatures. Let’s dissect what actually happens when woody plants are pruned during this time.

Sumac leaves in full autumn glory.

First, we need to separate temperate trees and shrubs from tropical and subtropical species. For the most part, the latter don’t become winter dormant: pruning them at any time means you will have regrowth as long as there are sufficient resources. If planted in more temperate zones, they will continue to grow until they are killed by freeze damage. Instead, we’ll look at temperate species and how they are adapted to surviving winter conditions.

Tropical woody plants like this jade are not winter dormant species. Don’t leave them outside even if you think they are protected (lesson learned).

I wrote a couple of posts last year on cold hardiness (here and here), so I won’t repeat those discussions on how plants survive freezing. Instead, we’ll focus on the process of HOW plants enter winter dormancy and become cold hardy. It’s a two-step process that depends on two different environmental factors: one that never changes from year to year, and one that certainly can.

The first step to dormancy is initiated right after the summer solstice. Plants are exquisitely adapted to changes in the light-to-dark ratio, and days begin shortening after the summer solstice. The changes that occur are largely biochemical, but you can also see some changes in plants themselves. Many trees and shrubs slow their growth during this time so that fewer young leaves and shoots are produced. Instead, resources are put into the existing foliage, or flowers for summer bloomers. Excess resources are routed to woody parts of the plant for storage.

Light and dark ratios vary with latitude, but the seasonal changes are always the same time of year.

From a practical standpoint, this means that when you prune trees and shrubs where growth has stopped, you will NOT get regrowth. The vegetative buds below the pruning cut are dormant. The tricky thing is that the exact time when the switch is thrown varies by species and is affected by environmental conditions. Careful observation will allow you to estimate when the plants will no longer produce new growth.

Some temperate species naturally put on a spurt of late summer growth. The leaves on these new Japanese maple shoots generally die from cold damage, but the branches themselves survive.

The second step begins when night temperatures cool to near freezing, which is not a predictable date. Because many of the biochemical and physiological processes have already begun or are finished, the response to cold night temperatures is rapid and visible. Leaf colors change as the plant begins breaking down leaf materials for mobilization and storage elsewhere in preparation for winter dormancy.

This katsura has started the process of autumn leaf senescence.

This process, honed over millions of years, is unfortunately not infallible especially under abnormal environmental conditions. Two examples spring to mind:

  • High intensity street lights. If the normal light-to-dark ratio change is interrupted by significant levels of night light, the first step of dormancy is hijacked. You can see what happens in these previous blog posts here and here.
That street light in the middle has kept the nearby leaves green while those farther away are senescing.
  • Unseasonably cold weather. With climate change, we are seeing wild shifts in all sorts of weather patterns, including the date of the first hard freeze. Hard, early freezes are not the same as a light evening frost. You can see what happens here:
A hard freeze in early November fried the leaves on this hydrangea.

Given normal conditions, however, temperate trees and shrubs are well on their way to full winter dormancy by late summer and early fall. Pruning them is not going to induce new growth.

A Gardener’s Primer to Cold Hardiness, Part 2

Snowpocalypse!

Last week I discussed the mechanics of how cold hardy plants can survive temperatures far below freezing. Today we’ll consider the practical implications of this phenomenon and what, if anything, you can do to help your plants through cold snaps.

What happens when temperatures change at unusually high rates?

Remember, supercooling occurs when temperatures drop slowly, allowing water to leave living cells and freeze in the dead spaces between cells. When rates drop quickly, which can happen on sunny winter days once the sun goes down, water can freeze inside the cells before it has time to migrate into the extracellular space. When that happens, those cells die when ice crystals pierce the cell membrane. Sometimes this damage will be visible right away – you’ll see water-soaked areas in leaves, for instance, where the contents of the cells have leaked into the extracellular spaces.

Watersoaked leaf on left was frozen, while the one on the right was not.

In other cases you may not see damage until spring, especially in buds that have frozen. The scales prevent you from seeing what’s happened to the tissues in the bud, but once warmer temperatures arrive you will see brown or black leaf and flower buds. These are NOT diseased buds, though they are often colonized by opportunistic pathogens.

Partially damaged Rhododendron flower bud

What about wind chill?

The wind chill question is an interesting one. Despite the way it feels to you, wind chill does NOT lower the temperature below the ambient air temperature. It just cools things off faster than they would without the wind. For cold hardy plants, this has two important effects:

  • The rate of temperature decrease around the plant speeds up – so ice can form faster than normal. This can result in freeze damage to the plant as described above.
  • The wind itself is dehydrating, pulling away water from plant tissues and causing freeze-induced dehydration (as discussed last week). This also causes damage to susceptible tissues and is often called winter burn.

So even though the temperature itself is not lowered by wind, the rate at which it decreases and the additional dehydration stress means that plants can be damaged at temperatures they would normally survive in the absence of wind.

What can we do to help plants survive?

Before cold temperatures are expected, it is critical to mulch the soil well with a thick layer of coarse, woody mulch. This insulates the soil and roots, which are the least cold tolerant of all plant tissues. Roots never go dormant, so they are generally unable to supercool much more than a few degrees below freezing. Oh, and be sure your soil is moist (but not waterlogged). Moist soil is a better heat sink than dry soil.

Arborist wood chip mulch protects soil and roots throughout the year.

Next, be sure insulate freeze-susceptible plants. This can be done by constructing a cage of chicken wire around small trees and shrubs, filling it with leaves, and then wrapping it in burlap. Containers should be moved to the leeward side of the house or other building and grouped together. The containers need to be protected from freezing at all costs.

Heavy wet snow should be removed to avoid structural damage to woody plants.

Speaking of insulation, snow is a great insulator. But it’s not always best to leave it in place. If temperatures are cold and snow is dry and light, leave it in place to insulated tissues. But if temperatures are near freezing and the snow is wet and heavy, remove it as much as possible. Its insulative value is marginal and the damage that heavy snow can do to trees and shrubs is permanent.

 

 

A Gardener’s Primer to Cold Hardiness, Part 1

Ice crystallizing on the outside of plant tissues is often not damaging (Ralf Dolgner)

With record low temperatures in some parts of the country, gardeners are understandably worried about the ability of their perennial and woody plants to survive the cold. What today’s post will do is give you some context for understanding how plants can survive temperatures far below freezing.

Why ice floats and how this damages cells

Ice weighs less than water, but takes up more space (Wikipedia).

Everyone knows that ice floats, whether it’s an iceberg in the ocean or cubes in your favorite chilled beverage. Ice is lighter than water because its molecular structure is different: there is more space between water molecules in ice. When water freezes naturally, the molecules organize into hexagons, forming a crystalline lattice (which helps explain why snowflakes look the way they do). This hexagonal shape forces water molecules farther away from each other, resulting in a porous material that’s lighter than liquid water.

Hexagonal shapes of of ice crystals (Picryl)

As ice crystals grow, they take up more space than the water did in liquid form. You know this if you have ever left a filled can or bottle in a freezer. The pressure can blow off the lid or split the container – and the same thing happens to animal cells: the membranes are distended until they burst. But plant cells are different: there are cell walls outside the membrane which are rigid and prevent membrane rupture. However, ice crystals are sharp and can lacerate membranes, including those in plant cells.

Frozen bottles of water will either leak or explode (PxHere)

How cold hardy plants avoid freeze damage

Woody plants have evolved a mechanism to survive winters that allows ice formation in certain areas and prevents it in others. This process takes advantage of the fact that plant cells have walls, and that the area between the cells – called the extracellular space – is not alive. Extracellular space is filled with gases and liquids – including water. Water can freeze in these spaces without causing damage because there are no membranes in extracellular spaces, only cell walls. As ice freezes in these “dead” spaces, more liquid water is drawn into them by diffusion from the adjoining cells. There are two outcomes of this: one is that ice only forms in the dead space, not the cells themselves, and two is that the liquid inside the cells becomes more concentrated.

Water that is full of dissolved substances (like sugars and salts) is less able to form ice crystals because there are relatively fewer water molecules in concentrated solutions. We can see this when we add deicers to frozen walkways and roads. The ability of water to stay in liquid form at temperatures below freezing is called supercooling. Plants that are cold hardy are able to tolerate ice formation in dead tissues and avoid ice formation in living tissues by supercooling.

Salt allows water to stay in liquid form at temperatures below freezing (BU News Service)

Supercooling is different than flash freezing

We need to discard any comparison of supercooling to flash freezing, a process used for cryopreservation. Flash freezing rapidly lowers the temperature of the tissue or organism being preserved at rates far faster than what happens in nature. The water molecules don’t arrange themselves in a crystalline lattice as they freeze. Instead they form small crystals in an unstructured form, which don’t take up more space than liquid water. This means that ice doesn’t damage the cells, which are still viable once thawed.

Supercooling allows water to remain in liquid form at temperatures below freezing…but eventually everything freezes (Wikimedia)

Supercooling is a process that occurs under natural conditions, which usually mean slow decreases in temperature. This allows water to continue to move out of the cells into the extracellular space where it freezes. (There are exceptions to this naturally slow rate, and I’ll discuss those in a follow up post.)

There is a limit to supercooling

Unfortunately for plants (and gardeners) there are limits to supercooling. These limits vary with species but even the most cold hardy plants will eventually experience injury and death. The reason this happens, however, isn’t from the freezing itself, but from drought stress. Let’s look at what’s happening inside the cells during supercooling.

A schematic diagram of plant cell plasmodesmata (Wikimedia)

As water continues to diffuse into the extracellular spaces, the cell becomes less turgid; this is called freeze-induced dehydration. Without water forcing the cell membranes against the walls, the membranes start to pull away as water is lost. Eventually the membranes and plasmodesmata (which connect living cells to one another) are stretched and break. These cells are now dead – they are isolated from the rest of the plant and the torn membranes allow liquid to seep out. So cells, tissues, and entire plants that die from low temperature stress are usually killed by drought stress!

And a photomicrograph of plasmodesmata connecting plant cells (Wikimedia)

In my follow up post, I’ll discuss the practical significance of this phenomenon, including rapid temperature changes in natural and the influence of wind. And, of course, some suggestions on how to help plants survive these stressful conditions.