Notes from the botanical etymology division, toxicology subcommittee

By Charlie Rohwer (Visiting Professor)

The recent assassination attempt England, interesting and significant geopolitically, has reminded me about one of my favorite Latin plant names. A report on the radio stated that atropine therapy is used to treat the specific poison involved in the attempt. To paraphrase Dr. Randy Pausch, “I’m a doctor, but not the kind who helps people.” Therefore, I have no authority on the medical uses of atropine. The world Health Organization lists it as a preoperative anesthetic on its list of essential medicines, so it must be pretty important.

Atropa belladonna, Leipzig botanical garden

But I do like horticulture and I like words. That’s where my interests lie in relation to this story. Many medicines are or have been plant-based. Atropine itself comes from certain plants in the nightshade family. Like any chemical people use, dosage of atropine determines its effects; atropine can be medically useful, or it can be deadly. The drug is named after a specific plant from which atropine can be obtained, Atropa belladonna. The omnibotanist Linnaeus named it in 1753 (can someone come up with a better word for him than ‘omnibotanist?’).

‘Belladonna,’ as it’s commonly called, is a small shrub native to Europe and Asia. ‘Belladonna’ comes from the Italian words ‘bella’ and ‘donna,’ meaning ‘beautiful woman.’ An extract from the plant was applied topically to eyes during the Renaissance to dilate pupils. One sign of sexual arousal is dilated pupils, so the extract would cause a response that looked like sexual arousal. If you were a lady going to a fancy party during the Renaissance and you wanted to look beautiful, belladonna may have helped (according to beauty standards of the time). My optometrist told me atropine isn’t used for retinal exams today because its effects last too long.

Dilated pupil

The other common name for Atropa belladonna is ‘deadly nightshade.’ The drug, atropine, is made of two isomers of hyoscyamine, made by the plant (and some other related plants). At some doses, hyoscyamine causes muscles to relax (like the iris, for example) due to its effects on nerves that control muscles. At larger doses, it can kill because you need muscles to breathe and to pump blood at a reasonable rate. Dosage and route of entry are important!

The author with one of his favorite books.

So Atropa belladonna was used to make ladies beautiful, hence the epithet ‘belladonna.’ But what about ‘Atropa?’ What’s that mean? Where does the drug atropine ultimately get its name? My favorite book as a kid was “D’Aulaires’ Book of Greek Myths.” Linneaus borrowed from the Greek myth of the three Fates in order to name deadly nightshade. According to D’Aulaires, these goddesses of destiny “…knew the past and the future, and even Zeus had no power to sway their decisions.” Nobody can escape fate. The three fates were named Clotho, Lachesis, and Atropos. The fates are responsible for the thread of everybody’s life. Clotho spins the thread at birth, Lachesis measures it out and determines destiny (what’s on the thread and how long it is), and Atropos (‘inflexible’ or ‘unturnable’) cuts the thread after Lachesis has apportioned it. Atropos is the goddess directly responsible for the end of everyone’s thread of life, and her action is final.

The Three Fates

Atropa belladonna simultaneously means something like ‘inevitable, inflexible death’ AND ‘beautiful lady.’ Indeed, the dose makes the poison.

 

Hello Again, and a fun article that was called to my attention.

By Jeff Gillman (posted by Linda C-S, who has taken liberties with using photos from UNC Charlotte gardens that have nothing to do with Jeff’s post.)

Living arch at UNC Charlotte gardens

It has been almost two years since I have had the chance to post anything as a Garden Professor. Since then I’ve taken a job as the Director of UNC Charlotte Botanical Gardens and there are all kinds of things I’d like to share with you, and perhaps sometime over the next few weeks and months I will, but for now what is probably most pertinent is that I absolutely love my job. I am still doing some work on garden myths, but what I’m finding more entertaining is investigating the histories of different plants and their interactions with humans. In fact, in about a month or so, my friend Cindy Proctor and I will be releasing a podcast titled The Plants We Eat that investigates the interesting history, culture and biology of the various plants we use for food. We’ve already recorded shows on strawberries, grapes and mad honey, and we’ll be doing shows on apples, figs, and a few others before we release it – we want to have a decent backlog of shows so that we can maintain a pace of one podcast a week.

UNC Charlotte gardens

But enough about me! The current Gardens Professors called my attention to a recent article titled “The effect of ad hominem attacks on the evaluation of claims promoted by scientists”, and I found it informative to say the least. This article provides instructions on how to stop people from trusting a particular study.

No, seriously. If you wanted to you could actually rewrite this as a short manual on how to make people question the results of any scientific study.

And if you did I think it would look kind of like this:

(Short Disclaimer – I’m pretty sure that the authors of the above article never intended it to be taken in the way I’m presenting it. I’m posting this purely as satire.)

So, someone has published a scientific article that you disagree with. Hey, we’ve all been there. Scientific evidence that contradicts your beliefs/works/preconceived notions sucks, but it isn’t the end of the world. There are things you can do.

You might consider conducting your own well-designed experiments that would call into question some of the claims of the offending work. Once upon a time this was been the standard way to address this kind of problem, but this could take months or even years to accomplish. And the truth of the matter is that your experiment might not even say what you want it to and even if it does, with attention spans the way they are, nobody will even remember what you’re even talking about when your paper comes out.

Which is to say, there are better, faster ways to take care of inconvenient research, and that’s where this convenient manual comes into play.

Rain gardens at UNC Charlotte

First, realize that attacking the research itself isn’t a sure thing. Sure, it’s the right thing to do, but morals be damned, attacking the research itself can be waaaayyy too technical. People won’t understand what you’re talking about, so forget about it.

Attacking researchers personally by making nasty comments about where they graduated from college or that they do sloppy research would seem like winner, that kind of attack just doesn’t cut it today. Maybe it’s the political climate, but, to their credit, people just aren’t responding to non-specific personal attacks the way they once did.

So you’ve got to be smart and hit them where it hurts. You could say that data was fabricated in the paper that you want to discredit, but this could be problematic if it isn’t true. Not to worry. All you really need to do is find an instance where the researcher did do something wrong. In fact, it’s possible that some past misconduct could be even more effective at discrediting a paper than misconduct on the paper in question itself.

The gold standard, however, is conflict of interest. By establishing that the researcher who has caused you grief has some sort of conflict of interest you can cause people to question the results of research just about as effectively as if some sort of misconduct had taken place, and conflicts of interest are much easier to find! You could blame a company, a person, or even a University. Shoot, want to show that a study, which demonstrates that an herbicide is effective at controlling a weed, isn’t true? All you need to do is show that the company which makes the herbicide gave a few hundred dollars to an athletic program at the school, or show that one of the student workers in the lab has a second cousin employed by the company. It’s all good.

Water hyacinth

And so there you have it. The fast, easy way to discredit someone. And remember, just implying things can be as effective as having facts. No need to lie! Good Luck, and remember The Truth is What You Make It!

Cryptic cladophylls – stems hiding in plain sight

One of my favorite topics back when I taught Botany 101 was plant oddities. A recent question on our Garden Professors’ discussion group on Facebook reminded me about cladophylls, like the one pictured below.

Terminal stem of Schlumbergera

Cladophyll literally means “branch leaf.” Anatomically it’s a branch (it has nodes from which new stems, leaves, flowers, and even roots can arise), but it functions as a leaf. It’s the main site of photosynthesis in plants such as holiday cacti (Schlumbergera species). Like other cacti, they have reduced leaves and if you look closely at the photo, you can see the leaves as tiny hairs arising from the nodes at the end of the stem and along the sides.

But unlike cacti, these plants aren’t found in deserts, and their leaves are soft threads rather than the vicious sharp spines you’ll find in typical cacti. Instead, these are generally epiphytes in coastal mountains where humidity is relatively high. But root water is limited for epiphytes and these waxy cladophylls probably are adaptations against water loss. Their reduced leaves are immune to drought stress, unlike those of other succulents which appear only when water is plentiful.

Euphorb leaves will drop when water is unavailable

As you might expect from their red, tubular flowers, holiday cacti are pollinated by hummingbirds in their native environment. Gardeners who have a sufficiently mild climate to grow these outdoors might be lucky enough to see them visited.

Schlumbergera flower

What’s in YOUR honey? It may not be the nectar you expected.

This month’s National Geographic has a brief article from an ongoing study of the DNA profiles of urban honey. While we can all observe honeybees visiting flowers in our own gardens, until recently we could only assume what nectar they were collecting for honey production. This tantalizing snippet completely blew me away.

Honey collection

The study, undertaken by an entomologist who founded the Urban Beekeeping Laboratory and Bee Sanctuary, is sampling urban hives from major cities, including Boston, Portland (OR), New York, San Francisco, Seattle, and Washington DC. For each of these cities, National Geographic reports the top three plants for honeybees based on relative DNA levels.

Here’s what I found amazing about this research:

      • The top sugar sources are from TREES. Not wildflowers. We don’t see bees visiting trees as easily as we see them visiting flowers, so our perceptions are biased. Over 75% of the sugar used for urban honey is from trees.

        Honeybee visiting flowering tree
      • The trees that are most popular for bee visitation are not necessarily native to those regions. Seattle bees, for instance, prefer linden and cypress trees, neither of which are part of the native coniferous forest. Likewise, the despised eucalyptus trees of San Francisco are one of the top three sugar sources.

        Flowers and leaves of linden
    • You’ll notice that I didn’t use the word “nectar” in describing what bees are collecting. That’s because much of the sugar they are gleaning isn’t coming from flowers. It’s coming from sap-sucking insects like aphids that produce honeydew. Bees apparently collect honeydew as well as floral nectar.

      Aphids!
    • Urban areas usually have higher plant diversity than rural areas, given the variety of woody and herbaceous plants that people use in their gardens and landscapes. The researchers speculate that this higher plant diversity may be one reason that urban hives are healthier and more productive than rural ones.

      Garden beehive

Many gardeners operate under the assumption that native plants are the best choice for gardens and landscapes. Though certain landscapes (like those undergoing ecological restoration) should only be planted with natives, there is no evidence-based reason that we shouldn’t be using non-invasive, introduced species as part of our planting palette.  In fact, research has demonstrated that tree species nativity plays only a minor role in urban landscape biodiversity: most animals learn to use new resources in their environment. Honeybees, considered to be “super-generalists” insects, are demonstrating that in spades.

Our New Year’s Resolution – to keep you informed and entertained every week.

Happy New Year!

The Garden Professor’s collective resolution is to have at least one new blog post a week for 2018. So I’m kicking things off with a little fact checking on the claims made for a product that’s “a complete ecosystem in a bottle.” The company touts its strong connection to science (“our products revolve around biology”). There is a long list of ingredients and claims – way too much for one post. We’ll start with the first four this week.

All this can be yours if the price is right!

Ingredient claim #1: “Chitin/chitin degrading Bacillus: Chitin is a natural polymer that is found in crustaceans, such as crabs, lobsters, shrimp and oysters as well as other organisms, such as insects, worms and fungi. When added to the soil ecosystem, chitin (also referred to as chitosan) promotes the growth of chitin-degrading bacteria. These bacteria, in turn, create a hostile environment for pathogenic fungi and parasitic nematodes. Chitin also acts directly on plants to promote tissue repair and disease resistance.”

Fact check #1: A couple of technical points: oysters don’t have chitin. And they’re not crustaceans. They are MOLLUSKS. They have shells with CALCIUM. And chitosan is not the same thing as chitin. It’s an industrially produced material that comes from chitin.

Not a crustacean.

Chitin is indeed found in arthropods, which include crustaceans and insects. Now, most of us don’t have crabs, lobsters and shrimp roaming our landscape, but we do have insects. Lots of them. They produce a lot of chitin when they molt and when they die. Do you really think we need to add more chitin for Bacillus to consumer? I sure haven’t seen any science supporting that practice.

What about the Bacillus species that degrade chitin? Well, if you’ve got insects in your landscape, you can bet you’ve got microbes that break down chitin as well. Otherwise you’d be up to your garden boots in chitin carcasses. So why do we need to add more bacteria?

Imagine billions of these in your garden…

Finally, there’s no evidence that chitin applied to plants in the landscape has any effect whatsoever. You might get responses in the lab, and chitosan (not chitin) might have some direct application. But like many other elicitors, you have to get it inside the plant to have a cellular effect. And plants are particularly adept at keeping things like decomposing bug bits outside of their tissues.

Ingredient claim #2: “Compost tea: The disease suppressive characteristics of compost have long been known and therefore the liquid extracts from compost, known as compost teas are being use to battle plant disease while stimulating plant growth. Beneficial organisms including bacteria (primarily from the genera Bacillus, Pseudomonas, and Penicillium) along with some yeast and fungi form a physical barrier against disease causing agents and provide a competitive environment in which the pathogenic species lose out. In addition, compost teas stimulate plant growth, translating into a healthier plant, which is more resistant to attack from disease. Compost teas have shown effectiveness in the control of late blight, grey mold, downy and powdery mildew, fusarium wilt, and apple scab among many others.”

The visuals are more interesting than the product.

Fact check #2. Just because compost has disease suppressing characteristics doesn’t mean that water leaching through it will have the same. We’ve been hearing for years that compost tea suppresses disease. Where’s the definitive research? It’s a topic I’ve been following for nearly two decades and there’s still nothing that’s consistently effective. (Another technical point here: it’s illegal to make pesticidal claims of a product that’s not registered for that use. Company lawyers may want to review that.)

There are many species of bacteria, including the ones mentioned, that form protective and beneficial biofilms on plant tissues such as fine roots. You can find these bacteria in compost and other sources of organic material – that’s their food source. You won’t find many of them in compost tea.

I’d love to see evidence of anything stimulating plant growth other than plant growth regulators (or hormones as they’re sometimes called).

Aren’t marketers getting tired of compost teas yet? I’m getting tired of hearing about them. I reviewed the science about them 10 years ago and haven’t seen anything to warrant an update.

Ingredient claim #3: “Essential oils: or essences they are called, are highly concentrated substances extracted from various parts of aromatic plants and trees. Essential oils are combined with other carrier oils and teas for stabilization. Essential oils are used against plant pests and disease by interfering with their reproduction and feeding habits while protecting beneficial predatory organisms.”

We like them, ergo they work.

Fact check #3: Essential oils have no documented benefit when applied outdoors. They can be effective in closed spaces, like homes and greenhouses, but they dissipate quickly outside. What I really want to see, however, is the mechanism by which oils can identify – and actually protect! – beneficial insects while killing pests. (Hey, lawyers…we’ve got another pesticidal claim here…)

Ingredient claim #4: “Streptomyces griseoviridis: Is a naturally occurring soil bacteria. The microbe deprives pathogenic fungi of living space and nourishment by colonizing roots in advance of fungi. In addition the microbe secretes various enzymes and metabolites which inhibit pathogenic growth. Streptomyces griseoviridis has been shown to promote the growth and yield of all plants. Streptomyces griseoviridis is used for the prevention of root and stem rot, Pythium, Rhizoctonia, Helminthosporium, Sclerotinia, among others.”

All those stickers keep the bad guys from colonizing.

Fact check #4: While this is a naturally occurring soil bacterium, it’s not clear where it naturally occurs. EPA information states it was first isolated in Finland from peat bogs. Is this something we should be introducing to our own soils? Its effectiveness in disease control and plant performance is sporadic and confined primarily to greenhouse application on crop plants. The diseases listed are common in greenhouses, but not necessarily in gardens and landscapes (presumably because there are natural controls outdoors in healthy soils). There is certainly nothing to support its use in gardens and landscapes, especially considering that many native, beneficial bacterial species can colonize plant roots and act as a protective biofilm.

Stay tuned for next time!

“Mulch Murder” Misinformation

This weekend I received a link to a Maryland gardening column with the intriguing title “Murder by Mulch.” My correspondent was concerned that her planned use of arborist wood chip mulch was going to cause problems. I assured her that it would not – but then spent some time looking at the column and putting it through CRAP analysis (credibility, relevance, accuracy, and purpose). It’s a skill that I encourage everyone – not just gardeners – to develop. (You’ll need to read the linked column to understand the context of my comments below.)

So we’ll start with credibility. The column is not a peer-reviewed resource, but then again neither is this blog. The author is a retired Extension specialist with research publications in compost science. That would seem to fit well with the topic. We’ll give it the benefit of doubt for now.

Use of arborist wood chips in a home landscape

How about relevance? Is this information relevant to the use of mulches in home landscapes? Absolutely.

Is this accurate information? At this point the column starts to fall apart. Let’s start with the photo (you’ll need to go to the linked column to see it). This tree didn’t die because of mulch, but because it had girdling roots – the result of planting trees improperly. Furthermore, there is no mechanism I can think of in which mulch would “strangle” a tree.

Another victim of girdling roots

Next, there is no distinction made among different types of mulch. Bark is not the same as wood chips, and coarse materials function differently than fine mulches. Bark mulches don’t absorb water like wood chips do, and fine mulches inhibit air and water movement into the soil (coarse mulches don’t cause this problem).

Wood chip mulches are an excellent choice for weed control and woody plant establishment

Finally, there is the statement that repeated application of bark will raise soil pH and increase manganese levels. There is no research I could find to support either one of these claims.

The purpose of this column was to educate – but it has failed to do so for the reasons outlined above. Where did the CRAP analysis fall apart?

We need to go back to looking at the author’s credentials. It’s not apparent from his publication record that he’s researched mulches at all. His work was primarily on composts, with the most recent article published in 1998. Nor has he published articles relevant to management of woody plants.

Wood chip research

Urban horticulture and arboriculture are relatively new fields of study that are rapidly evolving. Information once accepted as factual decades ago may no longer hold true, as newer research changes our understanding of the way that plants and soils work in managed landscapes.

Rhymes with nārang

By Visiting Professors Dr. Charlie Rohwer and Ulrike Carlson

I’ve had this dream of doing a full academic etymological study of oranges, with the help of a second-cousin-by-marriage linguist and her historian husband. Being honest with myself, I know that’ll never happen. And also, honestly, they’d have to do all the work anyway.

But, the Garden Professor’s Facebook post about the citrus family tree revived my interest. Not for a full-blown academic analysis of the word ‘orange,’ but for a blog-friendly, factual, interesting post. So I got my linguist cousin Ulrike Carlson to edit for accuracy too.

The name given to the orange by Linnaeus was Citrus aurantium, and the only other citrus species he noted in his first volume of Species Plantarum was Citrus medica. The current taxonomy of citron is Citrus medica L., and bitter orange (or Seville orange, used for marmalade and Belgian beer) is Citrus aurantium L. According to Linnaeus, sweet orange and pomelo were separate varieties of C. aurantium (var. sinensis and var. grandis, respectively). For a pretty image of the family tree, see the National Geographic article here. Basically, it is now known that all common citrus fruits are hybrids derived from citron, mandarin, pomelo, and papeda.

The current taxonomy for sweet orange, Citrus sinensis (L.) Osbeck, clearly defines the fruit’s Eastern origin (sinensis comes from Latin for ‘Chinese’) and altered nomenclature (Osbeck refined Linnaeus’ original taxonomy). But the name given to bitter orange, C. aurantium, points to its South Asian origin, and here’s why. The Tamil (south India) word for orange transliterates to ārañcu; Sanskrit words look similar; the Persian nārang is derived from there. As the bitter and sweet orange hybrids were likely made somewhere between Northern India and Southern China, it would be expected that the European names for these fruits come from these or nearby areas too. The origin of Linnaeus’ aurantium are obvious. Aurantium is Latin for the orange tree, and aurancia is the fruit. If you say these words aloud, they all sound similar to each other, to nārang, and to the English orange.

But here’s where it gets more interesting, with a preface: the word apple has historically been used to describe any fruit that’s not a small berry. Also, bitter oranges were common in Europe before sweet oranges. In fact, when sweet oranges came on the scene in the 17th century, wealthy people built greenhouses or gardens (“orangeries”) specifically for the new, more delicious versions of the fruit.

Orangery at the Château_de_Versailles
By Djampa – Own work

My first time in the Netherlands, I noticed orange juice is called sinaasapelsap. I don’t know Dutch really, but…doesn’t that mean ‘Chinese apple juice?’ Sinaas: Chinese (sinensis); apel: apple; sap: …sap (juice)? I knew in French that it’s jus d’orange (juice of the orange), and I knew ‘orange’ in Spanish is naranja (looks & sounds a lot like orange and narang). Why would the Dutch call it Chinese apple juice? Fast forward a couple years, I’m in Denmark, and what do I see? Appelsinsaft. CHINESE APPLE JUICE…English, Dutch, Danish, they’re all Germanic languages. Shouldn’t the Germanic languages call it orange juice, like I do? Then it hits me. English is the odd duck here. The Germanic languages call orange juice ‘Chinese apple juice’. This reflects the name Linnaeus gave the sweet orange (var. sinensis, or ‘Chinese’). Best I can tell, among Germanic languages, only English, Afrikaans, and Scots gets their word for the sweet orange from the older word for the bitter orange, nārang.

Citrus aurantium
By A. Barra – Own work

That’s not the last word on the subject though. You can go to Italy for sweet oranges and get arance, the Czech Republic and get pomeranče (apple-orange), Ireland and get oráistí, Bulgaria and get oranzhev, or Portugal and get laranjas (aka, oranges). All words that come from nārang or aurancia. You can go to Estonia, Finland, Sweden, Norway, and Germany and get some kind of Chinese apples (aka, oranges). But even as most Italians eat arance, you’d instead ask for a partuallu in Sicily. Or you’d eat a portokáli in Greece, portokall in Albania, etc. The Portuguese, with their awesome shipping routes, imported sweet oranges from China, then grew and distributed them through Europe in the 17th century. They were a big improvement over the bitter orange (which would you rather have, marmalade from a bitter orange, or a juicy sweet orange?). So some countries called the sweet orange by the name of the proximal country they were shipped from, Portugal. Bitter oranges (AKA Seville oranges, named from where they were grown) are called pomerans (from apple-orange) in Swedish, Pomeranzen or Bitterorangen in German, pomeransen in Dutch…so it seems that when sweet oranges came to Germanic-speaking countries, the languages kept the word they’d been using for the bitter orange (calling it an orange-apple or bitter orange), and added a different word for the sweet orange, calling it a Chinese apple. This is all complicated because political boundaries have changed a lot in Europe, and languages borrow from each other. So northern Germans might still eat Chinese apples, but southern Germans might eat oranges.

Also, if you’re interested and you’ve made it this far, the color orange is so named because that’s the color of the fruit. It’s not the other way around. It’s a pretty recent color descriptor. That’s why robins, with their orange breasts, are called robin red-breast. There was no word for the color orange when the robin was first described.

Also of great interest is the House of Orange. If you’ve seen a Dutch soccer game, or been to the Netherlands, you’ll know they like the color orange. William I of Orange, basically the founder of the Netherlands, came from a principality called ‘Orange’, now in France, and the Dutch celebrate their royal family with the color of its namesake. BUT, Orange, France was named, a couple thousand years ago (before the fruit came to Europe), after a Celtic water god, Arausio. At the time, this had nothing to do with the fruit or the color. HOWEVER, since the middle ages, the crest of the French city shows orange fruit on a branch, and the crest for the German city of Oranienbaum (orange tree) has, you guessed it, an orange tree. According to Wikipedia, Oranienbaum was named after the Dutch House of Orange.

Coat of arms for the House of Orange

For more about how these languages are related, here’s a ‘simple’ chart.

Worst Gardening Advice – Video category

Here at the Garden Professors we try to focus on sharing the best applied plant and soil science information for gardens and landscapes. But sometimes we get sidetracked by information that is SO bad that we need to share it too. So the purpose of this occasional feature – Worst Gardening Advice – is not to poke fun, but to point out the real hazards to plants, people, and the environment by following scientifically unsound practices.

Without identifying which of my GP colleagues nominated this video, we now present how NOT to fix storm damaged trees.

 

Dowsing for dollars

Recently I was at the Northwest Flower and Garden show and spoke to a gardener who was excited about some new information from his garden club meeting. Their speaker was a dowser – who promotes dowse gardening.

Traditional dowsing for water

Now this was a new concept for me. I’ve heard of dowsing, of course, in the context of finding underground water. But dowse gardening?

Fortunately, my gardening friend shared his handout with me. I did a little Internet sleuthing and found the author, whose goal was to combine her two interests: dowsing and gardening. In a 2003 column, she stated “My main focus is ways of using subtle energy to get good crops or gardens.”

For me, this was an immediate red flag. It’s very much like the author’s motivation in The Sound of Music and Plants. Searching for a topic for an undergraduate research topic, she asked “What in the world can I do with music and plants?” Trying to force two unrelated subjects together without preliminary data to suggest the pairing is not a logical approach to scientific inquiry.

Anyway. Back to dowse gardening. It would take me weeks to dissect all of the claims made in the handout. In brief, the presentation explains how to find energy, how to receive and broadcast energy, and how to use “subtle energy” to grow healthier plants and control pests.

This circle garden just looks sad and lonely.

Unfortunately, the specifics on exactly how this happens were not given. But attendees were advised to create circle gardens (they are energy outgoing), to use earth energies to determine where and where not to grow plants, and to use prayers and crystals to improve seed sprouting. At least in this last case there were data:

“Prayers over seeds -30% increase in sprouting and production – energy! Next step – crystals pointed at sprouting seeds, 50% increase in sprouting and production – energy!”

And finally, there were all kinds of products that were recommended, including

  • French coils for “inducing beneficial energies in trees and larger perennials”
  • Energized water made by a process “that can transform our banal tap water back to its natural potent state as the elixir of life”
  • Sonic Bloom – an “organic fertilizer applied with sound”
  • Slim Spurling’s Light Life Tools which “support the work of environmental clearing, air pollution clearing, energy balancing, water improvement, alternative agriculture methods, insect control without sprays, beneficial insect enhancement, alternative health methods, personal self-care, computer radiation reduction, EMF pollution reduction, personal life improvement as well as business improvement”
  • Intrinsic Data Field Analyzer – “a consciousness interactive instrument that has been used experimentally to detect and balance the IDFs of plants, animals, minerals, and virtually all animate and inanimate objects”
What you’ll need to detect subtle energy

As a scientist, it’s easy for me to discount all of this as silliness. But the fact remains that many people, including gardeners, long for mystical approaches to life. And unfortunately there are always going to be hucksters waiting to take advantage of that longing.

The Garden Professors rise again

It’s been over a year since I’ve posted to our blog.

I feel bad about that. But there’s always something else competing for my time, and the blog slipped away from the top of my “to do” list.

No more.

Today the federal government has clamped down on the ability of its scientists to communicate with the public. This is real – and it is frightening.

There’s not much I can do about that edict in my position as a state Extension specialist. But as a state Extension specialist I have a responsibility to translate and transmit information to the public relevant to my discipline. So here’s my offer.

If you are, or if you know, a federal scientist who has information relevant to my discipline (applied plant and soil sciences) that you want the public to see, send it to me. I will post it here, and in our social media, keeping the source anonymous.

Science will NOT be suppressed. Yes, that sounds dramatic, but I don’t think any of my colleagues foresaw what is happening with the new administration. It’s time to act.

Thanks to "The scientist, Photos and The o'jays on Pinterest"
Thanks to “The scientist, Photos and The o’jays on Pinterest”