Rhymes with nārang

By Visiting Professors Dr. Charlie Rohwer and Ulrike Carlson

I’ve had this dream of doing a full academic etymological study of oranges, with the help of a second-cousin-by-marriage linguist and her historian husband. Being honest with myself, I know that’ll never happen. And also, honestly, they’d have to do all the work anyway.

But, the Garden Professor’s Facebook post about the citrus family tree revived my interest. Not for a full-blown academic analysis of the word ‘orange,’ but for a blog-friendly, factual, interesting post. So I got my linguist cousin Ulrike Carlson to edit for accuracy too.

The name given to the orange by Linnaeus was Citrus aurantium, and the only other citrus species he noted in his first volume of Species Plantarum was Citrus medica. The current taxonomy of citron is Citrus medica L., and bitter orange (or Seville orange, used for marmalade and Belgian beer) is Citrus aurantium L. According to Linnaeus, sweet orange and pomelo were separate varieties of C. aurantium (var. sinensis and var. grandis, respectively). For a pretty image of the family tree, see the National Geographic article here. Basically, it is now known that all common citrus fruits are hybrids derived from citron, mandarin, pomelo, and papeda.

The current taxonomy for sweet orange, Citrus sinensis (L.) Osbeck, clearly defines the fruit’s Eastern origin (sinensis comes from Latin for ‘Chinese’) and altered nomenclature (Osbeck refined Linnaeus’ original taxonomy). But the name given to bitter orange, C. aurantium, points to its South Asian origin, and here’s why. The Tamil (south India) word for orange transliterates to ārañcu; Sanskrit words look similar; the Persian nārang is derived from there. As the bitter and sweet orange hybrids were likely made somewhere between Northern India and Southern China, it would be expected that the European names for these fruits come from these or nearby areas too. The origin of Linnaeus’ aurantium are obvious. Aurantium is Latin for the orange tree, and aurancia is the fruit. If you say these words aloud, they all sound similar to each other, to nārang, and to the English orange.

But here’s where it gets more interesting, with a preface: the word apple has historically been used to describe any fruit that’s not a small berry. Also, bitter oranges were common in Europe before sweet oranges. In fact, when sweet oranges came on the scene in the 17th century, wealthy people built greenhouses or gardens (“orangeries”) specifically for the new, more delicious versions of the fruit.

Orangery at the Château_de_Versailles
By Djampa – Own work

My first time in the Netherlands, I noticed orange juice is called sinaasapelsap. I don’t know Dutch really, but…doesn’t that mean ‘Chinese apple juice?’ Sinaas: Chinese (sinensis); apel: apple; sap: …sap (juice)? I knew in French that it’s jus d’orange (juice of the orange), and I knew ‘orange’ in Spanish is naranja (looks & sounds a lot like orange and narang). Why would the Dutch call it Chinese apple juice? Fast forward a couple years, I’m in Denmark, and what do I see? Appelsinsaft. CHINESE APPLE JUICE…English, Dutch, Danish, they’re all Germanic languages. Shouldn’t the Germanic languages call it orange juice, like I do? Then it hits me. English is the odd duck here. The Germanic languages call orange juice ‘Chinese apple juice’. This reflects the name Linnaeus gave the sweet orange (var. sinensis, or ‘Chinese’). Best I can tell, among Germanic languages, only English, Afrikaans, and Scots gets their word for the sweet orange from the older word for the bitter orange, nārang.

Citrus aurantium
By A. Barra – Own work

That’s not the last word on the subject though. You can go to Italy for sweet oranges and get arance, the Czech Republic and get pomeranče (apple-orange), Ireland and get oráistí, Bulgaria and get oranzhev, or Portugal and get laranjas (aka, oranges). All words that come from nārang or aurancia. You can go to Estonia, Finland, Sweden, Norway, and Germany and get some kind of Chinese apples (aka, oranges). But even as most Italians eat arance, you’d instead ask for a partuallu in Sicily. Or you’d eat a portokáli in Greece, portokall in Albania, etc. The Portuguese, with their awesome shipping routes, imported sweet oranges from China, then grew and distributed them through Europe in the 17th century. They were a big improvement over the bitter orange (which would you rather have, marmalade from a bitter orange, or a juicy sweet orange?). So some countries called the sweet orange by the name of the proximal country they were shipped from, Portugal. Bitter oranges (AKA Seville oranges, named from where they were grown) are called pomerans (from apple-orange) in Swedish, Pomeranzen or Bitterorangen in German, pomeransen in Dutch…so it seems that when sweet oranges came to Germanic-speaking countries, the languages kept the word they’d been using for the bitter orange (calling it an orange-apple or bitter orange), and added a different word for the sweet orange, calling it a Chinese apple. This is all complicated because political boundaries have changed a lot in Europe, and languages borrow from each other. So northern Germans might still eat Chinese apples, but southern Germans might eat oranges.

Also, if you’re interested and you’ve made it this far, the color orange is so named because that’s the color of the fruit. It’s not the other way around. It’s a pretty recent color descriptor. That’s why robins, with their orange breasts, are called robin red-breast. There was no word for the color orange when the robin was first described.

Also of great interest is the House of Orange. If you’ve seen a Dutch soccer game, or been to the Netherlands, you’ll know they like the color orange. William I of Orange, basically the founder of the Netherlands, came from a principality called ‘Orange’, now in France, and the Dutch celebrate their royal family with the color of its namesake. BUT, Orange, France was named, a couple thousand years ago (before the fruit came to Europe), after a Celtic water god, Arausio. At the time, this had nothing to do with the fruit or the color. HOWEVER, since the middle ages, the crest of the French city shows orange fruit on a branch, and the crest for the German city of Oranienbaum (orange tree) has, you guessed it, an orange tree. According to Wikipedia, Oranienbaum was named after the Dutch House of Orange.

Coat of arms for the House of Orange

For more about how these languages are related, here’s a ‘simple’ chart.

Worst Gardening Advice – Video category

Here at the Garden Professors we try to focus on sharing the best applied plant and soil science information for gardens and landscapes. But sometimes we get sidetracked by information that is SO bad that we need to share it too. So the purpose of this occasional feature – Worst Gardening Advice – is not to poke fun, but to point out the real hazards to plants, people, and the environment by following scientifically unsound practices.

Without identifying which of my GP colleagues nominated this video, we now present how NOT to fix storm damaged trees.

 

Dowsing for dollars

Recently I was at the Northwest Flower and Garden show and spoke to a gardener who was excited about some new information from his garden club meeting. Their speaker was a dowser – who promotes dowse gardening.

Traditional dowsing for water

Now this was a new concept for me. I’ve heard of dowsing, of course, in the context of finding underground water. But dowse gardening?

Fortunately, my gardening friend shared his handout with me. I did a little Internet sleuthing and found the author, whose goal was to combine her two interests: dowsing and gardening. In a 2003 column, she stated “My main focus is ways of using subtle energy to get good crops or gardens.”

For me, this was an immediate red flag. It’s very much like the author’s motivation in The Sound of Music and Plants. Searching for a topic for an undergraduate research topic, she asked “What in the world can I do with music and plants?” Trying to force two unrelated subjects together without preliminary data to suggest the pairing is not a logical approach to scientific inquiry.

Anyway. Back to dowse gardening. It would take me weeks to dissect all of the claims made in the handout. In brief, the presentation explains how to find energy, how to receive and broadcast energy, and how to use “subtle energy” to grow healthier plants and control pests.

This circle garden just looks sad and lonely.

Unfortunately, the specifics on exactly how this happens were not given. But attendees were advised to create circle gardens (they are energy outgoing), to use earth energies to determine where and where not to grow plants, and to use prayers and crystals to improve seed sprouting. At least in this last case there were data:

“Prayers over seeds -30% increase in sprouting and production – energy! Next step – crystals pointed at sprouting seeds, 50% increase in sprouting and production – energy!”

And finally, there were all kinds of products that were recommended, including

  • French coils for “inducing beneficial energies in trees and larger perennials”
  • Energized water made by a process “that can transform our banal tap water back to its natural potent state as the elixir of life”
  • Sonic Bloom – an “organic fertilizer applied with sound”
  • Slim Spurling’s Light Life Tools which “support the work of environmental clearing, air pollution clearing, energy balancing, water improvement, alternative agriculture methods, insect control without sprays, beneficial insect enhancement, alternative health methods, personal self-care, computer radiation reduction, EMF pollution reduction, personal life improvement as well as business improvement”
  • Intrinsic Data Field Analyzer – “a consciousness interactive instrument that has been used experimentally to detect and balance the IDFs of plants, animals, minerals, and virtually all animate and inanimate objects”
What you’ll need to detect subtle energy

As a scientist, it’s easy for me to discount all of this as silliness. But the fact remains that many people, including gardeners, long for mystical approaches to life. And unfortunately there are always going to be hucksters waiting to take advantage of that longing.

The Garden Professors rise again

It’s been over a year since I’ve posted to our blog.

I feel bad about that. But there’s always something else competing for my time, and the blog slipped away from the top of my “to do” list.

No more.

Today the federal government has clamped down on the ability of its scientists to communicate with the public. This is real – and it is frightening.

There’s not much I can do about that edict in my position as a state Extension specialist. But as a state Extension specialist I have a responsibility to translate and transmit information to the public relevant to my discipline. So here’s my offer.

If you are, or if you know, a federal scientist who has information relevant to my discipline (applied plant and soil sciences) that you want the public to see, send it to me. I will post it here, and in our social media, keeping the source anonymous.

Science will NOT be suppressed. Yes, that sounds dramatic, but I don’t think any of my colleagues foresaw what is happening with the new administration. It’s time to act.

Thanks to "The scientist, Photos and The o'jays on Pinterest"
Thanks to “The scientist, Photos and The o’jays on Pinterest”

Our brightly colored world

By Dr. John Palka (from his blog site)

We are now headed into the dark part of the year. The winter solstice is less than a month away. For the moment, however, let us think not about these short days and long nights, but back to the summer—and especially to summer’s brilliant flowers. How do all these colors come to be? What allows us to perceive them? Why don’t we see the world in the black-and-white of old-style photographs?

Let’s start our exploration of these questions in the northwestern corner of Washington’s Puget Sound, a stone’s throw from the Canadian border. Here lie the San Juan Islands, hundreds of islands, islets, and projecting rocks so beautiful that people sometimes ride the ferry just to glimpse them from the deck, never even getting off to walk on land. These complex and convoluted landforms are home to thousands of birds and marine mammals, their shores are decorated with exotic-looking creatures bumping up on one another, and every bit of soil is covered with rich vegetation—stands of Douglas fir and cedar, a bright coastal fringe of madrones with their vivid red-orange bark and brilliant white blossoms, and grasses that turn golden with the advance of summer. In the spring the islands are carpeted with wildflowers, and none more richly than eleven-acre Yellow Island.

Yellow Island has been owned and protected by The Nature Conservancy since 1979. Its flora is basically intact, the way it once was on all the islands, and in the spring it is brilliant.

Buttercups
The masses of yellow that give the island its name are buttercups.

The photographer finds it hard to move forward, there are so many sights to delight the eye and invite a picture. The biologist is thrilled that such a place still exists, so close to the densely settled metropolis of Seattle and its surrounding cities. And I, in addition to these feelings, find myself marveling at the colors themselves.

Camas
The purplish-blue camas lily, prized by Native Americans for its edible bulbs, abounds.
Paintbrush
As does the brilliant red Indian paintbrush.

All the Colors of the Rainbow

The plants on Yellow Island glow with literally all the colors of the rainbow, from blue, through green and yellow, and on to orange and red. They call out a question that scientists and philosophers have asked literally for centuries—how do leaves and flowers come to have the colors they do? Indeed, why are objects of any kind seen by us as having distinguishable colors?

The sensation of color is an everyday aspect of conscious experience for most of us, but what makes it so? It needn’t be, for we are all familiar with a world without color, as portrayed in the marvelously evocative black-and-white prints of master photographers. It is also different for those who have some form of colorblindness.

For us to experience a colored world requires the operation of many mechanisms, not all of which are understood by today’s science. The foundation of the entire complex chain of processes leading to conscious experience is, however, the interaction of light with molecules. Inasmuch as there are two partners in this interaction—light, and the molecules that are affected by light—we will need to consider both of them.

Let’s start with light, particularly sunlight, the natural light in whose presence all life on Earth evolved. Thermonuclear reactions occurring within the Sun emit massive amounts of energy that streams out in all directions, through the solar system and beyond. The total quantity of solar energy reaching the Earth is just right to warm the planet to a temperature that has enabled the evolution of life. It arrives on Earth’s surface in the form of a vast range of wavelengths of electromagnetic energy, from the extremely short-wavelength and highly energetic gamma rays and X-rays at one extreme, to the long- wavelength, low energy radio waves at the other. Between these two ends of the total electromagnetic spectrum the ratio of wavelengths (and hence also of energies) is 1018, or 1 followed by 18 zeros. Gamma rays are of atomic dimensions, so short that we have no sensory experience to compare them to, while radio waves are measured in miles. Nevertheless, their basic nature is the same. Extraordinary!

Visible light is a tiny, tiny slice of wavelengths in the middle of this vast range, with ultraviolet (sunburn!) just to the shorter wavelength side, and infrared (heat!) to the longer wavelength side. The spectrum that underlies our experience of light and of the visible world runs from violet to red. Here is what this spectrum looks like on the ceiling of a friend’s apartment, with the colors separated by a faceted glass ball she has hanging in her west-facing window.

spectrumAnd here is the same spectrum seen in a rainbow over the rolling plains of Montana, north of Yellowstone National Park.

rainbow
Rainbows and Flowers

The sunlight that reaches our Earth literally consists of all the colors of the rainbow. But what about the flowers? How do we relate the colors contained within the apparently colorless light that is shining on a meadow to the colors we experience as being the property of the buttercups, the camas, and the paintbrushes?

To come to a deeper understanding, think about a colored liquid that you can handle easily yourself, say red food coloring. You grasp the tiny bottle, squeeze a few drops into a small glass of water, and voilà, you have red water. White light shining in from one side of the glass emerges as red light from the other side. Test it. If you let light shine through the glass and onto a sheet of white paper, you will see a patch of red.

What happened to turn the white light that entered the glass into the red light that exited? When light struck the dye molecules that were dissolved in otherwise colorless water, some wavelengths of light were selectively absorbed. If they were absorbed, they could no longer pass through the solution and be seen on the other side. The color of the light exiting from the solution, therefore, is due to the wavelengths that were not absorbed.

This is a bedrock principle that underlies our experience of color, and that we will explore in several subsequent posts. Molecules absorb some wavelengths of light and fail to absorb others, and the wavelengths that are not absorbed are ones that can reach our eyes and be seen. Notice that there are two partners dancing to manifest this principle, the light and the molecules absorbing the light. This partner dance will be our foundation as we explore the amazing realm of color. For now, just go out into the world and pay attention to the colors you see, being grateful for the privilege.

Watch a silly product morph into a lawsuit

A few years ago someone emailed me information on another garden miracle – this time a product called Mighty Wash. I found my notes on this product as I wondered what I should post about today. The sales information at the time advertised Mighty Wash as “frequency water” (which we’ll get to in a minute). Here’s part of the original advertisement:

Mostly water - plus "pink sauce" according to lawsuit documents
Mostly water – plus “pink sauce” according to lawsuit documents

“Mighty Wash is a new revolutionary way to solve your spider mite problem in all stages of development from eggs to adults…Mighty Wash is a ready to use “Frequency Imprinted” foliar spray. It is imprinted with special frequencies which target fleshy bodied insects. The use of frequency is nothing new to our world, and as you probably know all things have a frequency. What makes our products special is the fact that our proprietary frequencies are holding and stable for at least 2 years and running.

“One attribute of our Mighty wash is that it paralyzes the insect on contact not allowing it to flood out eggs and begin the resistance process! Essentially there is no resilience that can be gained from or product unlike so many others, and without the use of any chemicals. Mighty Wash does have very low levels of our naturally derived botanical oils, along with frequency make it the cleanest solution to your spider mite problem.”

Mites "flooding out eggs" [Photo source Wikipedia}
Mites “flooding out eggs” [Photo source Wikipedia]
When I looked for the manufacturer’s current information (an LLC called NPK), I couldn’t find reference to “frequency water” and its miraculous properties. After a bit of internet digging, I discovered that Mighty Wash was the subject of a bitter trademark dispute.  For me, the best thing about this dispute is the deposition, which states exactly what the original makers of Mighty Wash claim their products do:

“Yeti invented and manufactures three plant washes using a confidential and proprietary formula and process that includes electronic frequency imprinting.”

They accused the defendant of making knock off products “not manufactured using Yeti’s proprietary formula and process” resulting in products “substantially less effective than Yeti’s Products.”

Leaving the legal battle for a minute, let’s see try to figure out how this product is manufactured. “Frequency Water” is water that’s been exposed to vibrational energy or to minute quantities of dissolved substances. That’s the “electronic frequency imprinting” which is referred to in the legal complaint; it’s also called “water memory” and is the foundation for explaining how homeopathic dilutions work.

Homeopathic medications are diluted until nothing is left except water [[Photo from Wikipedia]
Homeopathic medications are diluted until nothing is left except water and presumably the memory of the substance [Photo source Wikipedia]
It will come as no surprise to readers of this blog that there’s no reliable, published science behind any of this. What is surprising is the amount of money these companies make on selling water in a spray bottle. Mighty Wash and related washes (PM Wash, Power Wash, and Ultimate Wash [which is “Mighty Wash without food coloring”]) must generate healthy sales for two companies to squabble over the trademark of a product that is basically…water.

And the Irony Prize goes to the charges of fraud and false advertising leveled at NPK by Yeti Enterprises.

Academic freedom vs. science-based advice

Those of you that have followed The Garden Professors for some time know that Jeff Gillman and I are relentless in our pursuit of gardening myths to explode. Social media – Facebook in particular – seems to be a natural breeding ground for dumb and/or dangerous home remedies that go viral. Most of these have no basis in actual science and are easy to dismiss. Other recommendations may have some science behind them, but a careful review of the literature often shows that the bulk of research does not support that particular practice or product. These ones are trickier to deal with, and nothing has been trickier for either me or Jeff than compost tea.

Nurseries often carry compost tea products (this one is now defunct)
Nurseries often carry compost tea products (this one is now defunct)

The two of us have posted extensively on this topic in the last six years: just use the search function over in the left hand column of this blog and type in “compost tea”. You’ll find enough reading to keep you busy for a while. I summarized the state of the literature a few years ago in the now-defunct MasterGardener Magazine and to be honest the accumulated literature hasn’t changed much in terms of generating solid science supporting compost tea use. But its popularity seems to be increasing among landscape professionals and gardeners alike.

Informed Gardener page

I get a lot of questions on compost tea from Master Gardeners in particular, who are bound by their positions as university volunteers to use science-based information. One of their major resources is the state university associated with their program – and recently this has become a problem for WSU Master Gardeners. Because on the Washington State University website you can find one professor who cites the lack of credible, consistent science on compost tea usage and another professor who provides workshops and webinars on making and using compost tea. Master Gardeners are understandably confused about what they can recommend and irritated that their university provides conflicting information. Why, they ask, does the university allow this to happen?

GP page

The answer is found in one of the most important values that universities protect: the academic freedom for faculty to speak their minds. Ideally this means that faculty can speak up about topics that are unpopular with university administrators without fear of reprisal, but it also means faculty have a soapbox on pretty much any topic they wish. And that’s whether or not they have any expertise or credibility on that topic. (For a particularly egregious example, one needs look no farther than prestigious MIT who has a research scientist with no expertise in biology or chemistry but who publishes articles in marginal journals linking glyphosate – the active ingredient in Roundup – to just about every known human malady.) Universities tend not step into this fray as it is a slippery slope – who decides what faculty speech should be censured and which should not?

GP group

How can Master Gardeners and others decide what information to believe? Well, that’s actually the mission of this blog and our Facebook page and group – to provide the best current gardening science and to help the public increase their scientific literacy skills. Science is not immutable – it advances as credible, published evidence accumulates. When and if compost tea ever becomes a consistent, effective product, we will be the first ones to share that information.