The Scoop on Poop: Manure in the Vegetable Garden (and potential food safety risks)

“Can I use manure to fertilize my garden?”  That’s a common question we get in Extension and on the Garden Professors page.  The answer is absolutely, but there’s a “but” that should follow that answer that not everyone shares.  And that is…but for fruits and vegetable gardens the manure you apply could be a potential source of human pathogens that could make you or your family sick. There are procedures and waiting periods you should follow to reduce the potential risk to human health from pathogens in manure and other animal products.”

Why manure?

First, application of manures to garden and farm production spaces is a good use of nutrients and provides a way to manage those nutrients to the benefit of growers and the environment.  Using the concentrated nutrients in the manures to grow crops reduces what washed downstream in the form of pollution. In addition to adding nutrients to the soil, application of manure and other animal byproducts (bone meal and blood meal, for example) add organic matter to the soil, which improves soil texture, nutrient retention and release, and supports beneficial microorganisms.

Typical N-P-K composition for some manures and composts. Source: UC Davis

For organic production, both in home gardens and on farms (certified organic or not), manure and animal products are an important input for fertility.  For the most part, manures offer a more concentrated (higher percentage) of nutrients by weight than composts composed only of plant residues, so less is usually needed (by weight) than plant composts to apply the same amount of nutrients.

While the nutrient levels of manures and composts can be highly variable, there are some general ranges that you can use to plan your application based on the needs you find in your soil test.  (And you should be doing a soil test, rather than just applying manure or compost willy-nilly.  Just because the nutrient concentrations are lower than a bag of 10-10-10, you can still over-apply nutrients with composts and manures).

So what are the hazards?

As you’ve probably realized from bathroom signs and handwashing campaigns, fecal material can carry a number of different human pathogens such as E. coli and Salmonella.  The major risk around application of manures to edible crops is the possible cross-contamination of the crop with those pathogens.  The number one hazard leading to foodborne illness from fresh produce is the application of organic fertilizers – mainly manure, but also those other byproducts like blood meal and bone meal.  Add in the fact that the consumption of raw fruits and vegetables has increased over the last decade or more, and you’ll soon understand why Farmers who grow edible crops must follow certain guidelines outlined in the Food Safety Modernization Act (FSMA, which you’ll hear pronounced to as fizz-mah) to reduce the potential risk that these pathogens pose to people who eat the crops.  Right now, only farms with a large volume of sales are required to follow the guidelines, but smaller producers are encouraged to follow them as best practice to reduce risk and liability. And while there isn’t a requirement for home gardeners to follow the guidelines, it is a good idea to understand the risks and incorporate the guidelines as best practice.  It is especially a good idea if the produce is being eaten by individuals who are at higher risk of foodborne illness – young children, the elderly, or those who are immunocomprimised.

The recommendations are also suggested when there’s contamination from unexpected or unknown sources like when vegetable gardens are flooded (click here for a recent article I wrote to distribute after the flooding in Nebraska and other midwestern states).

Recommendations to reduce risk

As previously stated, while these recommendations have been developed for produce farmers, research showing the potential hazards of applying manures means that it is a good idea for home gardeners to understand and reduce risks from their own home gardens.

The set of guidelines outlined by FSMA cover what are called Biological Soil Amendments of Animal Origin (BSAAO – since we government types love our acronyms).  Here’s the “official definitions” used in the rules for produce farming:

A Biological Soil Amendment is “any soil amendment containing biological materials such as stabilized compost, manure, non-fecal animal byproducts, peat moss, pre-consumer vegetative waste, sewage sludge biosolids, table waste, agricultural tea, or yard trimmings, alone or in combination”.

A Biological Soil Amendment of Animal Origin is “untreated: cattle manure; poultry litter; swine slurry; or horse manure.”

Image result for manure
Now that’s a pile of crap!

For BSAAO (we’ll call it raw manure), manure should only be applied to the soil and care should be taken not to get it on the plants.  There’s also a waiting period between applying the manure and when you should harvest the crop.  The length of the waiting period depends on whether the edible part of the crop comes in direct contact with the soil.  Right now the USDA is still researching the appropriate waiting period between application and harvest, so the general recommendation until then is to follow the standards laid out in the National Organic Program (NOP) standards.  Research shows that while pathogens may break down when exposed to the elements like sun and rain, they can persist for a long time especially in the soil.

For now, here are the recommendations:

For crops that contact the soil, like leafy greens (ex: lettuce, spinach, squash, cucumbers, strawberries) the suggested minimum waiting period between manure application and harvest is 120 days.

For crops that do not contact the soil (ex: staked tomatoes, eggplant, corn) the suggested minimum waiting period between manure application and harvest is 90 days.

For farmers following FSMA, the waiting periods could change when the final rule is released – some early thoughts are that it could increase to 9 – 12 months if the research shows a longer period is needed.

What about composted manure?  Is it safe? The guidelines indicate that there isn’t a waiting period between application of manure that has been “processed to completion to adequately reduce microorganisms of public health significance.”  But what does that mean?  The guidelines lay out that for open pile or windrow composting the compost must be maintained between 131°F and 170°F for a minimum of 15 days, must be turned at least 5 times in that period, must be cured for a minimum of 45 days, and must be kept in a location where it can’t be contaminated with pathogens again (animal droppings, etc).  Farmers have the added step of monitoring and thoroughly documenting all of the steps and temperatures.  Now we know that that’s a bit of overkill for home gardeners, but suffice it to say that the cow manure that’s been piled up to age for  a few years that you got from the farm down the road doesn’t meet that standard.

Image result for compost
Failure to maintain proper temperature on composted manure could mean that your goose is cooked, though this thermometer doesn’t have that setting.

“Aged” manure ≠ “processed to completion to adequately reduce microorganisms of public health significance.”  So unless you know for sure that you’ve reached and sustained the appropriate temperatures in your compost, you should assume that it would be considered a BSAAO subject to the 90/120 waiting period.  Bagged manure you buy at the garden center is likely to be composted “to completion” or may even have other steps to reduce pathogens like pasteurization.  Sometimes the label will indicate what steps have been taken to reduce pathogens, or even state that it has been tested for pathogens.

The recommendations also specifically mention compost teas and leachates (a topic we handle with much frequency and derision here at the GPs, since there’s not much science to back up their use and I mention here with much trepidation).  For the sake of food safety, any tea or leachate should only be applied to the soil, not the plant.  And for home compost that doesn’t even contain animal manure the 90/120 day waiting period should still be observed in most cases since some of what goes into home compost is post-consumer.  Since we put pieces of produce in there that we’ve bitten from or chewed on (post-consumer), plus some animal origin items (eggshells) there’s the potential that we could contaminate the compost with our own pathogens – and the environment is perfect for them to multiply.

The Bottom Line

While these guidelines and rules for farmers may just be best practice recommendations that we can pass on to home gardeners, common sense tells us that taking precautions when applying potential pathogens to our edible gardens.  An ounce of prevention is worth a pound of cure, especially when were talking about poop.

Sources/Resources:

Supplemental Lights for Home Seed Starting and Indoor Growing: Some Considerations

Whether you’ve already got seedlings growing away or getting ready to start your annual indoor seed starting, one of the important factors in seed starting is light.  (Last month I covered heat, which you can see here).  Questions like “Do I need to use supplemental light or can I use a window?” and “What kind of light do I need to use?” are ones we often get from gardeners – new and seasoned alike.  So I thought I’d take a little time to talk about light – the factors that are important for plant growth some ways that you can make sure you’re providing the right kinds and amounts of light to your new seedlings.  Keeping these ideas in mind can help you choose lights for your seeds starting (or other plant needs), whether it is a simple shop light ballast from the hardware store, a pre-fab light cart system, or even higher-tech LED system.

Plants require light for several of their functions, most importantly the process of photosynthesis.  The green pigments in plants (Chlorophyll A and B) act as receptors, gathering electrons from the light to use as an energy source to manufacture glucose, which is stored in the plant in a number of ways and then ultimately broken down in respiration to release energy to support plant functions.  There are three aspects to light that gardeners should keep in mind for supplemental lighting: quality (color), quantity (brightness/intensity), and duration (day/night length).

Duration is a relatively simple concept when it comes to seeds starting and light set-ups.  Gardeners will want to try to mimic the natural environment that will be provided by the sun.  For the most part, aiming for 16 hours of light and 8 hours of dark is standard.  This gives the plant sufficient light, but also provides a rest period which can be important for plant functions.  Most gardeners find it handy to invest in timers to turn lights on and off, rather than trying to remember to do it themselves.  This can be a simple on-off set up from the hardware store (after-holiday shopping can be a good way to pick them up on sale in the string light section) to something more elaborate from grower suppliers.  Duration could be more important if you’re doing longer term growing beyond seeds starting, as day length affects initiating of flowering in some plants.

Intensity refers to how bright the lights are.  Some lucky people have big windows with lots of bright light for starting seeds, but even for them intensity (and duration) may not be enough during the shorter, grayer days of winter. Growing in bright windows can sometimes be a challenge because the light is coming from the side rather than above, so plants often grow toward the window and need to be rotated.  Supplemental light can increase intensity and lengthen duration, even for plants grown in windows.

Most commonly, light bulbs are sold by wattage as a measure of their energy (light) output.  Standard tube florescent lights are generally around the 40 Watt level, but some of the full spectrum plant lights come in 54W options.  If you can find it, the higher wattage can make a big difference in the intensity of light and thus the production of your plants.  Even at the higher wattage, you’ll want to get a ballast that holds at least two bulbs (and some grow light ballasts hold more).  You can further control the intensity of light reaching your plants by increasing or decreasing the distance between the plants and the lights.  This is why the pre-made plant carts have a chain or other mechanism for you to raise and lower the lamps.  For fluorescents, lights are sometimes lowered to around an inch above the canopy of the lights.  For high intensity LEDs, the distance may need to be more.  (If you’re using lights for long-term growth of, say houseplants, you’ll have to experiment with the distance to meet the intensity needs of the plants – closer for high light plants and farther away for low light plants).

Light Quality: The Rainbow Connection

Sunlight, or white light, is composed of all of the colors of the spectrum. Think back to art class and our friend ROY G BIV – the colors of the rainbow.  There’s also parts of the spectrum that we don’t see like ultraviolet and infrared.  For photosynthesis, plants mostly use light in the red and blue spectrum (referred to as Photosynthetic Active Radiation, or PAR), though almost all of the colors have some sort of effect or function on plants.  Blue light has a role in promoting vegetative growth in plants, while red has a role in promoting flowering.

Image result for plant light spectrum

For most applications, supplemental light for seed starting or other indoor growing should be full-spectrum.  You can achieve this in a variety of ways – buying specific full-spectrum plant light bulbs is the best, but you can buy non-plant specific full spectrum bulbs as well.  For small-scale home growers and beginners, it can be as simple as buying a shop light ballast at the hardware/box store with a full spectrum bulb.  For more intensive or large-scale growers, there are lots of sources for higher-end, full spectrum grow lights that you can buy from specialty garden retailers, but these are often more than what home gardeners starting seeds indoors need.

Fluorescent vs LED

Image result for fluorescent shop light
Typical shop light ballast

These days you might be presented with a choice of lights – fluorescent vs. LED.  There are some positives and negatives to each.  While they have a higher up-front cost, LEDs use much less energy than fluorescents and can save money over several seasons of use.  The reduced energy usage also means there’s less energy loss in the form of heat, which can be a positive if you are always struggling with creating excess heat that burns your plants, but a negative if you’re relying on that heat to help keep the temperatures up (see my article from last month on heat and seed starting) or have issues with drying out your growing media.  Fluorescents on the other hand can be more affordable up-front, but have a higher energy usage that will result in higher electric bills over time.

understanding the basics of grow lights for indoor plants and indoor gardening
LED grow light via Shutterstock by nikkytok

You might have noticed in your searching or in visiting some growers that LED lights for plant growth come in either white (full spectrum) or a red/blue combination which end up giving a purple light.  Since LEDs give a larger control over the spectrum of light, growers, especially larger scale intensive operations, use these red/blue combinations as a means to add further energy efficiency since it is the blue and red spectra that are the photosynthetic. By eliminating the spectra that are largely reflected rather than absorbed, less energy is used.  This is useful in hydroponic and vertical farming systems where short-term crops are being grown quickly and where profit margins can be slim.

You can read (and listen to) more about light in the Joe Gardener podcast and article on seeds starting I was interviewed for last year with Joe Lamp’l.

However, research has emerged in the last few years that expanding the spectra of light in LED systems increases production. Research has shown that incorporating green LEDs significantly increases production over just red/blue LEDs (some of that research was by Kevin Folta, who is one of the leading science communicators on biotechnology). While green plants largely reflect rather than absorb green light, it does have some effect on plant functions.   (Research also shows that adding the green makes the light appear a little more natural to workers in facilities like greenhouses and makes it easier to see issues with the plants – the purple of the red/blue systems washes out the plants and makes it hard to see differences in leaves like diseases).

So if you’re looking at LEDs for seeds starting, and especially if you’re looking at them for longer term indoor plant growing, stick with full spectrum or explore one of the LED systems that incorporates green.  Though don’t be afraid to experiment with the colorful LED options – I have a small red/blue system to supplement light to my office potted lime.  The key is to experiment and shop around – every gardener’s need for supplemental light is different and the solutions to those needs are different.  Don’t be afraid to start small with that shop light from the hardware store before working your way up – especially if you’re just starting a small amount of seeds in the spring.

 

Feel the Heat: Temperature and Germination

 

In most parts of the country it is time to dust off the seed starting trays, pick out your favorite seeds, and get a little plant propagation going on.  There’s definitely a lot of science (and perhaps a bit of art) to successful seed starting.  While the process starts (and relies on) the imbibition of water, one of the biggest factors that affects the success, efficiency, and speed of seed germination and propagation is temperature.  Germination relies on a number of chemical and physical reactions within the seed, and the speed and success of those reactions is highly temperature dependent. Respiration, where the seed breaks down stored carbohydrates for energy, is probably the most notable process involved that is temperature dependent (source).   Think of it in terms of a chemical reaction you might have done back in your high school or college chemistry class – there’s an optimum temperature for the reaction and any lower and higher the reaction might slow down or not happen at all.

Thinking of it this way, seeds and germination are just like Goldilocks and her porridge – there’s too hot, too cold, and “just” right.  Seeds are the same way – there’s a “just right” temperature for germination. The seeds of each species has a different optimal temperature for germination with a range of minimum and maximum temperatures for the process.

Why is important that seeds are started at their optimal temperature?

The optimal temperature is the one at which germination is the fastest. This may seem to only have consequences for impatient gardeners, but slower germination speeds increase the days to emergence for the seeds, which in turns means that the seeds and seedlings have a greater chance of failure. The early stages of germination are when seedlings are most susceptible to damping off, which can be caused by a number of fungal pathogens (Fusarium spp., Phytophthera spp., Pythium spp., etc.) that basically cause the seedling to rot at the soil level. These pathogens (as well as decomposers in some cases) can cause seeds to rot or decompose before emerging as well.  That’s why you’ll sometimes see seeds that are slow to germinate (or traditionally direct sown like corn, beans, and peas) treated with those colorful fungicides.  The fungicide gives the seed and seedling a little bit of protection (for a week or so, depending on the product), which is handy if you accidentally sow them before soil temperatures are optimal or if the species is slow to germinate.

If emergence is really slow, there’s also the possibility of stunting or failure due to exhaustion of the stored carbohydrates that the seed relies on until it begins photosynthesis.  So the closer to the optimal temperature the seed is, the faster the emergence and the highest percentage of germination success.

Image of graph showing relationship between soil temperature and seed germination.

What does this mean for home gardeners?

Whether you are starting seeds indoors or direct sowing outdoors, knowing the germination temps can help increase your likelihood of success.  You can find a variety of resources for the optimal germination temperature for your selected crops.  In general, most warm season plants, like tomatoes, peppers, and summer flowers are in the 70-80 °F range.  This is why most of the warm season crops are started indoors – so temperatures can be controlled to higher levels.

For vegetable crops, here’s a good resource for basic germination temperatures.  And here’s one for a few annual flowers.

Many of the cool season crops germinate at much lower temperatures, which means many of them can be directly sown early in the season rather than started indoors.  Crops such as spinach, lettuce, and other leafy greens have these lower germination temps and typically perform better if germinated at lower temps.

Germinating a variety of plants for our 2018 All-America Selections trials

It should be noted that this is for the soil temperature, not the air temperature. If you’re starting seeds in your home, most people don’t keep their homes in the 75 – 80 degree range in the winter.  Many commercial operations use warmed tables or beds for seed starting, rather than heating the whole facility to the necessary temp – it would be expensive.  For home growers, supplemental heat mats can help increase soil temp without having to heat a whole room.  In a pinch, you can even clean off the top of your fridge and keep seedlings there.  It is higher up in the room (heat rises) and most refrigerators create some amount of external heat as they run.

For any seeds that you’re direct sowing outdoors, whether they require higher or lower germination temperatures, you’ll have more success if you plan your sowing around soil temperatures rather than calendar dates (planting calendars can be good for estimation, though).  Investing in a soil thermometer can offer detailed information on the specific temperatures in your garden soil.  Or, if you have a good weather station nearby many of them have soil temperature probes that could give you a good idea of what the soil temperatures are in your region.

Direct-sown lettuce germinating for a fall crop

But don’t let the cool/warm season crop designation fool you – the Cole crops like cabbage and broccoli actually have an optimal germination temperature on the warmer side, but grow better in cooler temperatures to keep them from bolting (flowering).  This is why they need to be started indoors for spring planting, but you can start them outdoors (even trying direct sowing) for fall crops – they germinate in the heat and then slow growth as the temperatures drop.

Compost in Seed Starting Mix: Recipe for Success….or Failure?

A recent question posted to the Garden Professors blog Facebook group (a place where you can join and join in conversation of garden science) asked about the potential for compost added to seed starting media to cause failure in germination.  It is a good question, and one that seems to have several different camps – from garden hero author folks swearing by it in their (non-peer reviewed) books, to fact sheets saying it isn’t a good idea.

I’ve always promoted that the best practice for seeds starting is using a sterile media to avoid such problems as damping off.  Many of the problems I’ve heard associated with compost and seed starting are that improperly finished compost can introduce disease microorganisms to the media or cause phytotoxicity, it can make the mix too heavy and thus create anaerobic conditions that starve emerging seedlings of oxygen or cause decomposition, and there is the potential for residues of herbicides in composts using farm waste, manure, or lawn clippings as a feedstock. But does compost really pose a risk to seed starting?  I decided to take a very quick spin through the literature to weigh the possibilities.  Here are some of the potential issues and what a quick glance at the literature says.

Keeping the Germs out of Germination

Compost, even finished compost, has a high microbial activity.  For the most part, the fungi and bacteria in compost are good guys that pose no threats to plants, they decomposers or neutral.  But incorrectly managed compost can also harbor fungi such as Pythium and Rhizoctonia that cause damping off or even other diseases such as early and late blight if diseased plants were added to the compost and sufficient heat levels weren’t maintained.  Composts that don’t reach 140°F and maintain that temperature for several days to kill off potential pathogens run the risk of introducing diseases into seedlings.

Many promote the use of compost and compost products for potential antagonistic effects on bad bacteria.  We’ve discussed compost tea and the lack of conclusive evidence that it has any effect on reducing disease here many times before, and this article found that there is no significant effect of compost tea on damping off.  Some other articles, such as this one, did find that commercially prepared composts added to media did suppress damping off.  However, it is to be noted that these are commercially prepared composts, which have a strict temperature requirement and often require testing for pathogen and bacterial populations.  Many home composters aren’t as proficient at maintaining temperatures suitable for pathogen elimination.

Even if the compost is pathogen free, introduction into a germination media could potentially increase the population of pathogens already present in the media (or that land on it from the air) by providing a source of food for bacterial and fungal growth.  The sterile mixes aren’t just sterile from a microorganism perspective, they’re also sterile from a nutrient perspective as well to help inhibit potential pathogen growth.  The seeds come with their own food, so it isn’t needed for initial germination – the seedlings should be moved to a more fertile mix once they’ve established their first set of true leaves.

Image result for damping off
Damping off, source hort.uwex.edu

You may be saying- “but we also direct sow seeds outdoors, where there’s lots of pathogens present in the soil.”  While this may be the case, damping off is still a definite problem in direct sowing and the loss of investment in materials, lights, and time is generally much lower (and less painful) than in indoor seedling production.  This is especially the case for large operations or for home gardeners who grow lots of stuff from seed.

This is the main issue that leads to the best practice recommendation to use a sterile seed-starting mix that doesn’t contain compost.  If a mix contains compost, it should be from a commercial enterprise that follows best practices or  pasteurized.

Maturity isn’t just for wines, cheeses, and people

Continuing to talk about proper composting, improperly finished compost that hasn’t properly matured (finished composting) can also lead to problems with seed germination.  Unfinished compost can still have woody material included, which has a high C/N ratio and also contain/release phytotoxic compounds during the decomposition process. The presence of decomposition microorganisms in a high C/N ratio means that there is still decomposition happening, which requires nitrogen for the process.  With absence of nitrogen in the media, the nitrogen from the seed or the seedling can be leeched out, effectively causing mortality after or even before germination.  The tender seedling serves as a source of N for the decomposing fungi.

We’ve had this discussion before when it comes mulch.  While mulch is perfectly fine on top of the soil, if it gets mixed into the soil there could be potential implications on N availability.

A germination bioassay is one tool commonly used to test for compost maturity.  Quickly germinating (and inexpensive) seeds are germinated on the compost (or on filter paper soaked with an extract from the compost in some commercial operations).  The rate of germination vs germination failure can give some insight into the maturity of the compost.  This paper discusses the use of the technique for commercial sawdust compost used for potting media.

You can use a bioassay of your own to test for compost maturity (or herbicide persistence, discussed later) for applications in your garden.  Sow an equal number of inexpensive, fast-germinating seeds like radish or lettuce sown on the compost with a control sown on moist paper towel in a bag.  Compare the number of germinated seeds and thriving seedlings after several days to see if there is an issue with the compost.

Keeping Things Light

One other quality required for seed starting media is a good level of porosity (pore spaces) for the media to hold air.  Air (oxygen) is important as it is needed by the roots for respiration.  If the media is too heavy or holds too much water you run the risk of hypoxia, or lack of oxygen, in the roots.  This can result in root die off and subsequent seedling failure.  Most seed starting media are composed of very light materials such as peat moss, coir, vermiculite, or perlite for this very reason.  Compost, by nature, is a more dense material with less porosity and has a higher water holding capacity.  Therefore incorporation of too much compost can create the potential risk of compaction or excessive water holding in the mix.

When Persistence Doesn’t Pay Off

Most herbicides break down during the composting process through a variety of physical and biological interactions.  However there have been reports of some herbicides that are persistent after the composting process, resulting in a residue that could damage plants grown using the compost (see this paper for some examples).  Many of the reports show the damage manifesting in mostly large applications of compost to gardens.  However, the more fragile nature of germinating seeds and young seedlings make them especially susceptible to herbicide residue damage.  For further discussion (and examples of bioassays used to detect herbicide residues), check out this paper.

So the potential for pathogens, risk of improperly matured compost, effect on porosity, and potential for herbicide persistence present some significant risks to germination if they are incorporated into seed starting media.  These are the risks that cause many sources to promote using sterile seeds starting media, and I think the advice is well founded.  While some may not experience these possible issues, the potential is still there.

The Myth, the Legend, the Parasite: Romance, Lore, and Science beneath the Mistletoe

As we hurdle ever closer to the holidays and the end of the year, there’s lots of plants we could talk about – amaryllis, poinsettias (and the abuse thereof with glitter and paint), whether or not your cactus celebrates Thanksgiving, Christmas, Easter or is agnostic, and on and on.  Each of these plants have an interesting history and connection to the holidays, but today we’re going to be a little more naughty…but nice.  We’re going to talk about mistletoe.

Now, mistletoe is one of those holiday plants that you don’t really want growing in your own garden. That’s because, even though it is a symbol of love and even peace, it truly is a parasite … and poisonous. It has been celebrated and even worshipped for centuries, and still has a “naughty but nice” place in holiday celebrations.

Burl Ives, as the loveable, banjo-playing, umbrella-toting and story-narrating snowman in the classic “Rudolph the Red-Nosed Reindeer” claymation cartoon tells us that one of the secrets to a “Holly Jolly Christmas” is the “mistletoe hung where you can see.” But where does this tradition of giving someone an innocent (or not-so-innocent) peck on the cheek whenever you find yourselves beneath the mistletoe come from? And just what is mistletoe anyway?

While mistletoe specialists need mistletoe, the reverse does not hold—mistletoe in many regions is dispersed solely by dietary generalists.
Distribution of mistletoe (and mistletoe specialist birds). Source: Mistletoe Seed Dispersal. Watson, D.M.

There are around 1500 species of mistletoe around the world, mainly in tropical and warmer climates, distributed on every continent except Antarctica.  In North America, the majority of mistletoe grows in the warmer southern states and Mexico, but some species can be found in the northern US and Canada.  A wide variety of birds feed on the berries of mistletoe and thus disperse seeds.  These birds include generalists who opportunistically feed on mistletoe, and specialists who rely on the berries as a major food source.

Mistletoe Haustoria from from Julius Sachs’ 1887 Lectures on Plant Physiology. Source: The Mistletoe Pages

First, we’ll cover the not-so-romantic bits of this little plant.  Mistletoe is a parasitic plant that grows in a variety of tree species by sinking root-like structures called haustoria into the branches of its host trees to obtain nutrients and nourishment. It provides nothing in return to the tree, which is why it is considered a parasite.

 

A heavy mistletoe infestation.                        Source: Pixabay

Mistletoe grows and spreads relatively slowly, so it typically does not pose an immediate risk to most trees.  While a few small colonies of mistletoe may not cause problems, trees with heavy infestations of mistletoe could have reduced vigor, stunting, or susceptibility to other issues like disease, drought, and heat. So be on the lookout for mistletoe in your trees and monitor it’s progression.

This little plant does have a long and storied history — from Norse mythology, to the Druids, and then finally European Christmas celebrations. Perhaps one of the most interesting things about the plant is the name. While there are varying sources for the name, the most generally accepted (and funniest) origin is German “mist” (dung) and “tang” (branch). A rough translation, then, would be “poop on a stick,” which comes from the fact that the plants are spread from tree to tree through seeds in bird droppings.

“Baldur’s Death” by Christoffer Wilhelm Eckersberg (1817)

In Norse mythology, the goddess Frigga (or Fricka for fans of Wagner’s operas) was an overprotective mother who made every object on Earth promise not to hurt her son, Baldr. She, of course, overlooked mistletoe because it was too small and young to do any harm. Finding this out, the trickster god Loki made a spear from mistletoe and gave it to Baldr’s blind brother Hod and tricked him into throwing it at Baldr (it was apparently a pastime to bounce objects off of Baldr, since he couldn’t be hurt).

Baldr, of course, died and Frigga was devastated. The white berries of the mistletoe are said to represent her tears, and as a memorial to her son she declared that the plant should represent love and that no harm should befall anyone standing beneath its branches.

The ancient Druids also held mistletoe in high esteem, so high that it could almost be called worship. During winter solstice celebrations, the Druids would harvest mistletoe from oak trees (which is rare — oak is not a common tree to see mistletoe in) using a golden sickle. The sprigs of mistletoe, which were not allowed to touch the ground, would then be distributed for people to hang above their doorways to ward off evil spirits.

While the collecting and displaying of mistletoe was likely incorporated into celebrations when Christmas became widespread in Europe in the third century, we don’t really see mention of it used specifically as a Christmas decoration until the 17th century. Custom dictates that mistletoe be hung in the home on Christmas Eve to protect the home, where it can stay until the next Christmas Eve or be removed on Candlemas (which is Feb. 2). The custom of kissing beneath the parasitic plant isn’t seen as part of the celebration until a century later.

Washington Irving, who more or less reinvigorated the celebration of Christmas in the United States in his day and whose writings still define the idyllic American Christmas celebration, reminisced quite humorously about mistletoe and Christmas from his travels to England. He wrote:

“Here were kept up the old games … [and] the Yule log and Christmas candle were regularly burnt, and the mistletoe with its white berries hung up, to the imminent peril of all the pretty housemaids.”

Whether or not your housemaids will be in peril, the hanging of the mistletoe can be a fun Christmas tradition. Look for it at garden centers and Christmas tree lots this season.  Or maybe you can find some growing wild and harvest it for your own decor. However, I would recommend not getting it out of the trees the “old Southern way” — shooting it out with a shotgun.

Sources:

  • Tainter, F.H. (2002). What Does Mistletoe Have To Do With Christmas?  APSnet Features. Online. doi: 10.1094/APSnetFeature-2002-1202
  • Briggs, J. (2000). What is Mistletoe? The Mistletoe Pages – Biology. Online. http://mistletoe.org.uk/homewp/
  • Watson, DM. (n.d.) (accessed). Mistletoe Seed Disperal [Blog Post]. Retrieved from https://ecosystemunraveller.com/connectivity/ecology-of-parasitic-plants/mistletoe-seed-dispersal/
  • Norse Mythology for Smart People. (nd) The Death of Baldur. Retrieved from https://norse-mythology.org/tales/the-death-of-baldur/

 

Thanksgiving: A celebration of the native plants and indigenous crops that grace the table

Native vs. non-native – that a subject that is brought up frequently on our forums and one we have to discuss at length.  However, I thought I’d take it from a different direction this week, a little diversion if you will, seeing as we are just a week away from our American celebration of Thanksgiving that centers around food – much of it native to the United States.

It is a holiday that is quintessentially American (or North American, since our Canadian friends also have their own Thanksgiving). A commemoration of not only the arrival and survival of the pilgrims in Plymouth in 1621, but of our thankfulness for what we have. It is a time for us to gather with family or friends and reflect upon our blessings.

While, much to my chagrin (and that of many others), Thanksgiving seems to have been swallowed up by the Christmas “season” and you can even go shopping for more stuff (an abomination, for sure) on a day when we are supposed to be thankful for what we have, it is still a day celebrated by many.

Turkey, dressing, potatoes, fresh bread rolls and pumpkin pie are the traditional fare for the celebration these days, but they are a far cry from what the original feast shared by the pilgrims and American Indians would have featured.

Historians agree that, while the feast was probably meat-heavy, turkey was probably not on the menu. It just wasn’t as popular a food item as it is today. Most agree that the original feast featured venison, with some waterfowl (goose or duck) and seafood (shellfish like oysters are a definite, maybe even eels or other shellfish).

I don’t think I’m alone in saying that I like the side dishes better than I like the actual turkey. There’s the dressing (or stuffing, depending on your preparation or colloquial terminology), mashed potatoes, sweet potatoes, and my aunt’s seven-layer salad that’s usually more mayo and bacon bits than vegetation.

The produce dishes at the first Thanksgiving would have been vastly different than the modern day smörgåsbord that we prepare. Experts agree that the majority of dishes would have been from native plants and indigenous crops grown by the local tribes, with a few ingredients showing up from the pilgrims’ gardens.

First off, the absence of wheat flour, sweetener and flour would mean the lack of the classic dessert…pumpkin pie. It is hard to imagine a lack of pumpkin while we live in a time in which we are surrounded by pumpkin spice everything (though mostly artificially flavored).

Sugar would have been too expensive to purchase for the voyage, and other sweeteners would have been limited to maple or other tree syrups. (Colonists had not yet brought over the honey bee, which is a European immigrant itself).

This is not to say that there wasn’t squash. There were squashes, including pumpkins, as part of the native diet at the time having spread from their origins in Mexico and Central America  . They were likely included in the feast, but either boiled or roasted, and unsweetened.

Beans would have probably been one of the dishes, as well. The Natives Americans ate beans both in dry and green form, but at a fall feast, the beans were likely the dried variety and cooked into a soup or stew. Corn was also a feature of the first Thanksgiving, but not sweet corn (which didn’t make an appearance until much later). The corn would have been a flint type (similar to popcorn) that would have been cooked into porridge or used as a bread.

Native tree nuts, such as walnuts, chestnuts and beech nuts could have also been used in the preparation of dishes. There isn’t any written record of the native cranberry or blueberry being used, either, but they would have been abundant in the area. They likely wouldn’t have caught on in popularity until sweeteners such as sugar from Europe or honey was available to dull their acidic bite, but the dried fruits could have been used in preparations of some of the meat. If there was a salad, watercress could have been used if an early frost hadn’t wiped it out.

The pilgrims had brought with them from Europe various seeds, including herbs and onions, that could have been used to flavor some of the dishes. They may have also brought things like turnips and carrots that could have been available for the first feast (though there isn’t any direct written proof).

One native food that would have most likely been on the first Thanksgiving table is the sunchoke (Helianthus tuberosus), or Jerusalem artichoke. Fallen out of favor for some time, the sunchoke is making its return to many gardens.

Image result for jerusalem artichoke
Jerusalem artichoke/sunchoke flower Wikimedia Commons

A true native food source, the sunchoke is the tuberous root of a species of sunflower (you may even see them growing on roadsides in the fall). The rhizome is roasted or boiled and has a nutty, starchy, potato-like texture and flavor. If you want to grow it, just remember that it is a perennial that will readily spread in the garden. These would have been the closest things to a potato dish the first celebrants would have eaten — we were still a long way away from bringing the potato from South America and the sweet potato from the Caribbean. (Botanist’s note: What we eat are sweet potatoes [Ipomea batatas], not yams [Dioscorea sp.], despite the insistence of canning companies. They aren’t even in the same family.)

So as you sit down for your Thanksgiving feast, be thankful for the blessings in your life and for the leaps and bounds our food options have improved over the past 400 years. Also be thankful for butter, flour, and sugar so you can have your pumpkin pie.

Grow Garlic – Keep the Neighborhood Vampires at Bay

While most of those gardening tasks are coming to an end, in most parts of the US it’s time to think about planting a few things in the veggie garden to bring a flavorful bounty next year – garlic (and a few related alliums).

I often reference Halloween and vampires when I talk about garlic, not just because traditional lore says that garlic repels vampires, but because it is a good reminder of when to plant garlic in the garden. October is the prime time for adding the alluring allium to the garden. You can also remember that you plant garlic during the same period that you plant spring flowering bulbs.

Why do vampires hate garlic?

Yes.  Vampires are fictional (unless someone finds some empirical evidence of their existence, since you can’t prove a negative 😉 ).  These bloodsucking creatures of folklore may actually have a basis in fact that could explain their aversion to garlic. Way back when people didn’t have science to understand things, they often invented explanation for things that were supernatural.  Sometimes these explanations may have actually had some truth to them.

In this case, the symptoms of vampiricism could have evolved from the symptoms of porphyria – a set of rare disorders of hemoglobin (there’s the connection between vampires and blood).  Symptoms of porphyria include shrunken gums (that could make teeth look like long fangs), painful sensitivity to sunlight, and….and averse reaction to garlic. The reaction comes from the effect of garlic on the blood – it can stimulate red blood cell turn over and increase blood flow, both of which can exacerbate symptoms of porphyria and cause acute, painful attacks.  There’s also an allegorical connection – vampirism was considered a disease (or represented the spread of disease in some literary cases) that was spread by a causal agent and garlic was seen as a curative for disease (it does have some antibacterial properties).  Note: other possible symptoms of porphyria can be excessive hair growth in random areas of the body, which gives it a connection to lore around lycanthropy.

On to the gardening

Now that we’ve covered some trivial, albeit interesting, info lets get on with the gardening!

While many people are accustomed to the single variety available in grocery stores, there are several different types of garlic that all have different flavor characteristics. These types can be classed in two categories; hardneck garlic has a hardened central stem when it dries, and softneck garlics remain soft and pliable. Softneck varieties are the ones that lend themselves to being braided into those hanging garlic braids. Softneck varieties are also longer-storing than hardneck varieties.

It can be tough to find garlic in local garden centers to plant. Those that do carry garlic, often carry it at the wrong time of year for planting when it is shipped in on the spring garden displays. If you don’t have friends to share their garlic with you, or a local farmer to buy some from, you are going to have to go the mail order (or online order) route.

Once you have your garlic bulbs, split them up into cloves, being sure that you have a piece of the basal plate (the part that holds them all together) on the clove. This one clove will turn into a whole bulb over the growing season.

Plant the cloves tip up about 4 to 6 inches apart and about 2 inches deep in loose, organic soil. Mulch after planting with about one inch of straw or shredded newspaper.

Garlic is a relatively heavy feeder, so it would benefit from a good balanced fertilizer treatment with nitrogen after it is established. You can also plant them in the garden where you grew beans over the summer – the bacteria that colonized bean roots adds nitrogen to the soil.

After that, just be patient. It may pop up before winter if the weather is mild, but don’t worry – it can survive even if a freeze kills the growth back to the ground.  Garlic requires little maintenance, and only requires water if the weather turns very dry. Harvest it once the leaves start to die in mid-summer (around July, unless it is an early-maturing variety). Be sure to save some to plant next year and store the rest for use in the kitchen.

Aside from garlic, there are some other odoriferous onion relatives you can plant this time of year like shallots and perennial onions in the vegetable garden or edible landscape.

Shallots have a mild onion flavor and are great because they form cloves like garlic (meaning you don’t have to cut up a whole bulb if you just need a little bit) and store well. The beauty of shallots is that they can also be planted in really early spring — they are a multi-seasonal crop. You can also start them from seeds in the spring.

Shallots are technically perennials, as they will grow over many years if left undisturbed. However, to harvest them, you have to dig them up so they are usually grown as annuals. Once you dig them up, use the larger bulbs for cooking and save the smaller ones for replanting.

Multiplier onions, sometimes called “potato onions” are another fall-planted perennial. These plants produce clusters of bulbs (hence the name “multiplier”) that are harvested in the early summer for bulb onions.

One of the benefits of these and other perennial onions is that you can harvest the green blades of the plant for use as green onions or scallions throughout most of the winter and spring.

Egyptian walking onions are another perennial that can be harvested either for its bulb or as a green onion. The name comes from the bulbils that form at the top of the flower stalk. When they mature, they get heavy enough for the stalk to collapse and fall over, creating a new bunch of onions away from the mother plant. You can allow them to do this to fill in an area, though most people limit it by harvesting the bulbils before they fall.

There are also perennial leeks that have a flavor similar to leeks and can be harvested as green leeks through the winter or dug up as small, tender leeks in the spring.

If you love growing perennial vegetables that add flavor to just about any dish, give these tasty plants a try. They’re really simple to grow and can keep your garden and your kitchen full of fun and flavors for years to come.

A quick primer on types of garlic

Hardneck Varieties

  • Purple Stripe — bulbs have purple on the outside. Some of the tastier garlics that become deliciously sweet when roasted.
  • Porcelain — popular gourmet variety. Usually has a more robust and spicy flavor. Bulbs are typically large and have large cloves.
  • Rocambole — Rich, complex flavors popular with chefs. Their scapes (edible blooms) form a double loop. They do not do well where winters are warm.
  • Asiatic/Turban — Do not store for long periods. Mature earlier in the season (late spring as opposed to summer) than other types. Flavors are usually strong and hot.
  • Creole — Attractive red color. Performs well where winters are warmer. The flavor is similar to (though milder than) Asiatic/Turban Varieties.

Softneck Varieties

  • Artichoke — the grocery store garlic (California White) is an artichoke garlic, though other varieties have more complex flavors. Bulbs tend to have multiple layers of cloves.
  • Silverskin — often the last in the season to mature, these are the longest-storing garlics.

Elephant Garlic

This is a common “garlic” planted by many gardeners because it has large, easy to use bulbs with a garlicky flavor.  Though it is technically not a garlic species – it is a type of perennial leek.

Sex and the Single Squash: A study in plant sex, sexuality, reproduction, and seed saving

In the 1960s, author and future Cosmopolitan magazine Editor Helen Gurley Brown scandalized the country with her book about independent single women called “Sex and the Single Girl.”  Taking a page from Ms. Brown, we can have a discussion about “Sex and the Single Squash.”  Here, we can talk about plant floral structure and reproduction and its effect on fruit production and even seed saving.  A true discussion of the “birds and the bees” if you will. This is especially important in the vegetable and fruit realm, since reproduction is why we get tomatoes, peppers, apples, plums and such in the first place.  It also is important for producing seeds, as those arise from the reproductive process as well.

Whether you knew it or not, flowers are not just different in appearance from plant to plant, but the ways in which they are pollinated and turn into fruit are different as well.

Some plants have what are called “perfect” flowers where both male and female parts are present, such as roses, apples and dandelions. In a way of speaking, you could say that these flowers are hermaphroditic.  These flowers may or may not be self-pollinated.  Depending on species genetics, some plants can self-fertilize (like tomatoes and beans) and others require cross-pollination (like apples).

Other flowers are “incomplete,” meaning that they have separate male and female flowers.  Some plants with “incomplete” flowers are called dioecious (Greek, meaning “two households”), and have distinct male and female plants such as ginkgo trees, holly bushes and kiwi vines. Some “incomplete” plants are monoecious and have distinct but separate male and female flowers on one plant — like squash, cucumbers and corn.

So, here’s where the vegetable garden comes in — one of the questions that I get every year without fail has something to do with why most of the flowers on a squash or cucumber or other cucurbit (that’s what we call plants in this family) plant do not produce fruit.

There are a few explanations – high heat causing aborted flowers or fruits or improper pollination, absence of pollinators, or, most likely, the fact that some of those flowers were never going to set fruit because they were male.  In answer, I have to explain that about half or more of the flowers on the plant are male and are, unfortunately, anatomically incapable of producing fruit.

There are a few ways to tell male and female flowers apart when it comes to members of the cucurbit family.

First, look at the base of the flower. If the base is swollen and looks like it is a tiny version of the mature fruit, then it is a female flower.

If the base is just a straight stem (in flowers, this stem is called a peduncle), then it is a male flower.

The second method is to look inside the flower. If there is one large central structure, called the pistil, that indicates the flower is female.

Male flowers will have several, smaller stamens inside. Female flowers also tend to be larger than male flowers.

Image result for squash flower male female

In the world of the single, available female squash blossom, life revolves around attracting honey and other native bees that have also recently visited male flowers to assure pollen transfer.

All members of the cucurbit family require this pollination tango to make sure that the female flowers produce fruit.

Each species and even variety of squash have a different ratio of male to female flowers. The ratio is usually about 1-to-1, but it is not unusual to see varieties with many more males than females.

Many of the plants also produce an abundance of male flowers early in the season, sort of as a teaser to make sure bees are attracted to the plant later on to pollinate the female plants.

So if a majority of flowers die early in the season without setting fruit, or about half of the flowers die throughout the season, there is nothing to worry about.

If female flowers are dying throughout the season without producing fruit, though, there is a definite problem. This means that there are no bees available to pollinate the plants.

If fruits have shrunken parts or misshapen, then there could be an issue of incomplete pollination from not having bees around. This could result from not having enough food for them in the area to encourage their presence, or from weather being too cool or wet for bees to get out and pollinate.

The lack of bees could also be the result of improper use of pesticides in the area.

If it seems like the birds and the bees aren’t happening in your garden, there are ways that you can ensure fruitfulness by taking matters into your own hands.

Transferring pollen from male flowers to female flowers can be accomplished using a small artist’s paintbrush or by simply pulling off a male flower and using it to apply pollen directly.

Gardeners who want to save seeds from plants in this family should also pollinate flowers by hand, and actually go so far as to protect the female flower from outside pollen using some sort of cover.

In fact, this method is often used by plant breeders or those who want to save seeds of crops that easily cross-pollinate.  Hand pollination followed by bagging the flower to keep pollen or pollinators away to avoid accidental unwanted pollen is often used to produce.

Believe it or not, several members of the squash family that look or taste nothing alike are the same species and can cross-pollinate. For example: Zucchini, summer squash, pumpkins, scallop squash, decorative gourds and acorn squash are all in the species Cucurbita pepo and can cross with each other.

A few years ago, one of my Master Gardeners came up to me at the end of a meeting and asked me what was wrong with her zucchini. She handed me an object roughly the shape of a zucchini, only a bit larger and splotched with orange. She had saved the seeds from the year before.20151104_200712

I immediately answered that her zucchini had crossed with a pumpkin. Both of these plants are the same species and can easily cross pollinate. Even if you don’t have pumpkins in your garden, bees can travel 2 miles or more in search of food.  So she was left with what I would call a Puccini.

Easy cross-pollination of varieties is why the most common heirloom crop varieties you’ll find are tomatoes and beans. Both of these crops have closed flowers that help resist cross-pollination.

They are most likely to be self-fertile, meaning that the flower will pollinate itself without outside assistance. This helps the plant breed true — so next year you end up with something that’s roughly the same as what you had this year. These plants can be just a few feet away from a different variety and they will not cross pollinate.

If you want to save something that is bee-pollinated, like your squash, pumpkins or cucumbers, you might want to do the brush and bag technique. Otherwise you might end up with a surprise in the garden next year.

The heirloom varieties that we often save are open pollinated, meaning that when they cross with themselves their genetics are relatively stable and you won’t see a lot of difference from year to year. (There will still be some difference, so if you save seeds for a long time you can end up with your own strain of a variety suited to your garden and location.)

Hybrids, on the other hand, have less stable genetics than the open pollinated varieties. With the way genetics work, some of those offspring will have traits of the mother plant, some will favor the father and some will be similar to the plant you are trying to save (and some might look like the milkman).

When seed companies sell hybrid varieties, they have to maintain a population of the mother plant and father plant to cross them every year to get the specific hybrid variety.

While the results of saving seeds from hybrids will be unpredictable, it can also be fun. My friend, plant breeder Joseph Tychonievich, points out in his talks and his book, “Plant Breeding for the Home Gardener,” that you can save the seeds from plants most closely resembling the desired plant over several years.

Just keep planting your selected seeds and harvesting the closest one to what you want. After about three or four years, you can end up with a relatively stable, perhaps even open-pollinated variety, that is your very own based on that hybrid variety you love.

And if you end up with a cross-pollination, either purposeful or accidental, you won’t see a difference in the fruit from this growing season (except maybe in corn, but that’s another story)  Those changes won’t be apparent until you grow out the seeds you saved.  So you won’t know until next year if you have one of those pucchinis.

And don’t forget: If you do have an overabundance of male squash flowers, they are edible too. You can put them in a casserole, fry them, stuff them, and more.

It’s all about location, location, location

Whenever we (the Garden Professors and our community) answer garden questions, we almost always will ask the location of the garden.  I’m sure this frustrates some people who think that plants act the same wherever they are.  However, this is not the case.  There isn’t a one-size-fits-all to most garden questions.

For example, I work on the east side of Nebraska in Omaha, along the Missouri river.  The environment (weather, soil, etc) here is vastly different than where I’ve spent most of my life in West Virginia.  I had to re-learn how to answer questions when I moved.  The soil pH is different (I’m still lamenting the fact that I can’t grow blueberries in Nebraska), the precipitation is much lower.  Even now when I appear on the statewide gardening show Backyard Farmer, I have to keep in mind the location of the incoming question.  The western side of the state is even drier than the eastern side, the growing season much shorter, and recommendations are vastly different.

The difference of where plants can grow and can’t is even more apparent when you travel to vastly different climates.  I recently came back from a trip to the tropical paradise of Costa Rica.  Many of my traveling partners and friends back home were blown away with the abundance of plants growing in yards, farms, and even in the wild that cannot grow “back home.”

The most common bedding plant in lawns were a popular holiday favorite here in the states – amaryllis.  They were planted in abundance along sidewalks and driveways.

Amaryllis prolific in a Costa Rican yard

I visited a diversified coffee farm that was using Dracena (a common houseplant) as living fence posts in their vegetable garden. (And did I say coffee farm – nothing like drinking a farm fresh cup of coffee right on the farm).

Living Dracena fence posts at a Costa Rican coffee and vegetable farm

Tillandsia air plants were growing like weeds (which is basically what they are) on the trunks of trees.

These are all tropical plants that won’t survive in colder or drier climates of the US.  (The southern US states can grow more tropical stuff, but is is a small portion of the country.)

Many of the plants we grow both indoors and out here in the states come from different areas and grow differently in those areas than they do here.  Our vegetables come from all over the world.  So do our flowers and houseplants.

Plants from warmer areas either have to be grown indoors or as annuals even if they are perennial or evergreen in their native environments.

This is why the location of your garden, environment, and even the microclimate in your yard is important to know when selecting plants.  Aside from the difference of what can grow, plants grow much differently in Florida than they do in Minnesota or Virginia. And why it is important information when you’re asking questions about how to grow plants or control insects and diseases – because its all about location, location, location.

Bonus: Cashew apples!

 

Arbor Day of Horrors

Happy Arbor Day!  What, you aren’t celebrating?  As a recent transplant to the state of Nebraska, I was amazed to learn that the Cornhusker State is the birthplace of the day we set aside to celebrate trees.  (Since most people associate the state with corn, football fanatics, and steak).  And since Arbor Day is near and dear to Nebraska, it is the only state that celebrates it as a civic holiday (most state offices were closed – no drivers license for you!).

The holiday got its start in 1872 when J. Sterling Morton of Nebraska City, Nebraska (just 40 miles south of Omaha) organized the planting of one million trees in the state of Nebraska on April 10.  Morton had been a newspaper editor, acting governor of the state, and after he founded Arbor Day was the 3rd US Secretary of Agriculture, having been appointed by President Grover Cleveland.

He built a mansion in Nebraska City that was later remodeled by his son Joy Morton (who had lots of money since he founded a little company called Morton Salt – maybe that’s where the anecdotal info of using salt to kill tree stumps/weeds started!).  These days the mansion is part of the Arbor Lodge State Historical Park.  The Arbor Day Farm is also part of the park, where locals and tourists alike stop for apple orchards, a tree playground, and wine tasting.

The modest Arbor Lodge, as captured when we were being tourists in our new state.

But if you haven’t planned a trip to Nebraska City for Arbor Day and you want to celebrate it at home by planting your own tree….well, there are some definite right and wrong ways to do things.  So I thought we’d invite people to share their tree horror stories.

What have you seen that just makes you go huh?  Do you have stories or pictures that are worthy of the carnage over at Crimes Against Horticulture?

Like the always frightening Mount Treesuvius?  (down with Tree Volcanoes!)

Image may contain: tree, plant, outdoor and nature
Mount Treesuvius – as captured by the Nebraska Forest Service

Or how about the girdling root stanglehold of slow death?

Image result for tree girdling roots

Or this truck-meets-tree first date fiasco that was sent in to our Extension gardening show Backyard Farmer this week?  (My diagnosis: prepare for last rights).

Photo via Backyard Farmer

Have you seen poorly planted, improperly pruned, damaged, or scary trees? Share your stories, pictures, and laments in the comments or on our Facebook page.