The weed apocalypse

I have been hiding from COVID-19 in Arizona, but I had to return to Ojai, Ca because I was “noticed” by the local fire department to abate my weeds. I returned to find the Weed Apocalypse (WA 2020). Late spring rains were spaced nicely in California supporting rampant weed growth. So, why did this happen? What can I do about it now? How could I have better prepared for WA 2021 next year?

The Ojai “Weed apocalypse”. This is what happens when you leave and do nothing in your garden for two months.

In May, the days are getting noticeably longer and moving closer to the longest day of the year (June 20–the summer Solstice). Longer days add more photosynthetically active radiation and put plants on a rapid growing phase at this time of the year. If water and soil nutrients are not limiting, this is the fastest growth period for most plants. Weeds have the unique quality that they will grow faster than many garden plants even with less resources. When resources are plentiful, they grow  faster still.

One way to prevent the weed apocalypse is to deteriorate the weed seed bank . The “weed seed bank” (WSB) is the amount of seeds stored in soil that are viable. The seed bank is restored each year when weeds set seed and drop them on or into the ground. In some cases the seed bank also includes plant parts such as Bermudagrass (Cynodon dactylon) stems and rhizomes (underground stems) that can lie quiet but, once sufficient moisture is available, they spring into life! So once the weeds set seed, just “whacking” or mowing and leaving the mulch behind does not usually solve the problem as viable seed is added to the WSB. Annual weeds can be reduced substantially if they are controlled prior to seed set.

Weeds are sneaky buggers. They imbue their progeny with germination inhibitors or dormancy factors that delay germination. Some seeds complete their maturation even when they have been cut away from the main plant. This is why weeds always seem to be there for you. When dormancy factors wear off, or are washed away seeds will germinate. So after a strong rain event or irrigation weeds emerge that were previously dormant. Some of the seeds remain dormant in the WSB as a back up opportunity to grow. In the case of Slender wild Oat, Avena barbata, it has two maturation ‘stages’ that take advantage of both early spring and late fall rains, with seed ripening at both of those seasonal times. Light is also necessary for many weeds to germinate. When weeds are removed by tilling or digging, new seeds are brought to the surface and may now germinate. Additionally, many weeds have the capacity to regenerate if the entire root is not removed. One tenacious weed, Field bindweed (Convolvulus arvensis), is known to regenerate from each node and root as deep as four feet. Cutting the plants into pieces makes more of them!

Weeds can be annual biennial or perennial . Some weeds such as Poa annua or annual bluegrass complete their life cycle (seed to seed) in only a few to several weeks, others grow for years. Annuals survive drought or cold winters as seeds while perennials as roots, tubers or dormant stolons or stems. Biennial weeds usually grow their vegetative body in the first year and reproductive structures in the second year, they are often rosette forming plants that grow close to the ground in the first season and develop tall stocks in the second. Knowing how to identify weeds helps to understand their biology and ultimately control strategies.

Many gardeners are herbicide averse. However, herbicides will often give the most economic and effective control of weeds. Some weeds like field bindweed are only well controlled with herbicides. Herbicides are broken down into two categories: pre-emergent herbicides and post emergent herbicides. Pre-emergent herbicides inhibit seed germination or kill emerging seedlings before they can develop. Post emergent herbicides kill weeds after they emerge from their seeds. Almost all weeds are better and more easily controlled at juvenile life stages. This is true for mechanical or chemical control. Regardless of how you choose to deal with the WA in your garden starting when weeds are small will give you a tremendous advantage.

Like all pesticides, herbicide labeling must be followed carefully to apply the right amount of product at the right time to the target weed (which also must be listed on the label). There are some amazing herbicidal tools that can save hours of labor. Some drawbacks of herbicides are that they may be expensive, may require multiple applications, require equipment to apply as well as personal protective equipment. Herbicides can be selective or broad spectrum. For instance, Fluazifob-P-butyl (active ingredient of Fusilade II) will control warm season grasses in many ornamental broadleaved plants. This is immensely useful since you can apply Fluazifop-P-butyl “over the top” of a flower garden and free it of bermudagrass (Cynodon dactylon) without harm to your ornamental garden plants or other non-grass landscape plants. Other herbicides containing plant growth regulators such as 2,4-D are broad-spectrum and will kill or harm many kinds of broad-leaved plants in turfgrass without harming the turfgrass. There are also some broad spectrum contact herbicides made of soaps or acids that will kill both broad leaved and grass weeds on contact. While these products do not have systemic action they can be very effective on both cool and warm season young weed seedlings. Herbicides when used carefully and following labeled instructions can save hours of hand weeding labor.

In my own yard I have chosen not to use herbicides because I have so many plants that are sensitive to the kinds of products I would need to use. I am pretty much down for other types of control. This month my city council decided to ban the use of gasoline powered lawn mowers–my chief weapon for the WA! We took a chance and used it anyway because our weed issues are so bad. As mentioned earlier the best time to use mechanical control of weeds is when they are in the cotyledon or two leaf stage of growth. A quick attack with a scuffle hoe will wipe them out. When they grow to adult weed size, larger and larger machinery become required.

Once perennial weeds such as bindweed grow a bit they become impossible to control with hoeing because they will grow back from roots. String line trimmers are used for weeding in many apocalypses but have their limitations. Bits of plastic trimmer line break off and pollute your landscape. Biodegradable plastics are usually used, but the idea of littering your yard with plastic bits is bothersome. Limiting the use of oil consuming machines is a great idea, but using battery powered machines has limits. Buying extra batteries so you can destroy while you charge is helpful.

Hand pulling is a great way to release pend up stress (of the human not the weed), get exercise, and rid the garden of apocalyptic pests. However, for some weeds like yellow nutsedge (Cyperus esculentus) you will only increase the problem as nutlets are released from dormancy when you pull the “mother” plant. By the time you see the emerging nutlets they have formed more nutlets so you can never get ahead of the problem. If you decide hand pulling will work, irrigate the day before you want to weed and they will come out much easier.

Mulching with fresh coarse arborist chips is a great way to prevent annual weeds from getting the light they need to germinate. Mulches also break down to improve soil. We have been mulching for a couple decades on my driveway but have not added any mulch for a few years. The broken down mulch and improved soil are now the most apocalyptic weed garden. If you use mulches for weed control fresh chips need to be applied at least annually in a thick layer to be effective. Also constant application of mulches can make soil! This soil builds up without you realizing that the root collar of perennials or trees may be getting buried. If you mulch consistently around trees be sure to keep the root collar exposed.

Not all weeds germinate in the early winter. There are winter and spring or summer germinating weeds. The differing timing of their emergence can happen unexpectedly. Just when you thought you had weeds in control, another set seems to appear requiring your attention. Look for summer emergent weeds when night temperature lows are above 60F.

Using an old glass shower door to solarize the soil and kill weeds. Note some yellow nutsedge is surviving near the edge of the doors.

Solarization is another way to kill weeds. This is the old greenhouse effect used as a weed weapon. Clear plastic laid on the soil surface and sealed at the edges will if exposed to full sun heat the contents to the point of their death. The solarization effect does not penetrate deeply into soil, so if perennial weeds are solarized, they may survive and regrow from root pieces. If you want to try solarizing your weeds purchase thick UV resistant plastic otherwise you will have bits of plastic everywhere as the sun breaks it down into pieces… Warning, this does not work with Field bindweed! In my own yard I have used old glass shower doors to solarize the soil.

Finally if all else fails and the WA is bearing down, you can just eat them. Many weeds are edible and can make good food. Nettle, Sonchus (sow thistle), purslane, dandelion and many of the Mustard family are edible at various stages of their development. Some folks have even collected mustard seeds and made their own condiments. Of course, you should always exercise caution when consuming wild foods. Some contain toxins or other chemicals that individuals may be sensitive to. The Sow thistle and wild lettuce (Lactuca spp.) contain latex which many are sensitive to. The stinging nettle has hairs on its surface that contain an irritant (oxalic acid) that causes skin burning and welts. Others, such as black elderberry may contain cyanide alkaloids in the green tissues-stems, fruit and other parts. Research the risks of consuming or contacting some plants before attempting to eat or handle them.  There is hope, because even the nutlets of one of the worst weeds (yellow nutsedge) are edible…

Sustainable gardens?

Natural ecosystems like this woodland in the Chiricahua national monument in Arizona maintain species density over time because the inputs are consistent with the plants that live there and the outputs are recycled.

The concept of sustainable agriculture is not new and the idea of sustainable gardens is likely just as dated. Sustainability as a concept can be applied to soil, farms, gardens or life in the biosphere. The second law of thermodynamics says that all systems tend toward thermodynamic equilibrium where there is maximum entropy (randomness). In functional ecosystems equilibrium is achieved to a degree, and plant, animal and other species are at stable levels. Ecosystems evolved over millions of years to develop connections between individuals creating support networks, predator-prey cycles and nutrient cycles. Inputs are adequate to “sustain” the system and outputs are all recycled. When we create our gardens we are setting up a system that we maintain through inputs and we appreciate the outputs, and it keeps us interested and involved in pushing back the entropy.  In almost all cases gardens are not natural systems and if left untended will become more random, weeds will grow, poorly adapted plants will be overrun and the balance will change to something matches the inputs and outputs of a sustainable system as dictated by the location/climate/soil, etc. 

Sustainable gardens rely on low inputs with maximum outputs. The plants grow over time with little maintenance, pest pressure, fertilizer or water…

The key to a sustainable garden is understanding inputs and outputs and the flow of energy in your system. The reason I like pristine ecosystems is that I don’t have to add inputs to them to take part in their beauty. As long as I don’t interrupt what is going on by breaking connections between organisms unwittingly, the system is self sustaining. Imagine the garden of Eden that always bears fruit and flowers with no inputs from you the gardener. You just walk into the garden and bask in it sbeauty occasionally eating some delicious item you find there. Well we all know that our own circumstances are far from this reality. Getting a garden to provide the aesthetics (beauty) or food (both outputs) often requires us to provide heavy amounts of inputs. Inputs are mostly energy in the form of kinetic or work energy of the gardener, hydrocarbon energy in the form of electricity to run gadgets or fuel to power mowing or clipping equipment, or fertilizers which may be derived from fossil fuels or from the sun as by products of plants. Energy is also the main input into plant systems that may be in your garden. Light contains the energy for their growth. Finally cash money is easily converted to all forms of energy. You can purchase labor, fertilizer, any number of garden amenities bypassing the personal output of your own kinetic energy. Or you can garden smarter and avoid large energy inputs by creating the sustainable garden…

So how do we get a sustainable “Garden of Eden”. First, recognize that not all gardens are the same; they have different functions and purposes. Some are for aesthetics only. Some are for food production. There is a wide body of research that shows gardens and green environments sustain our health; both physical and mental (this would be an output). So a garden is not sustainable if it does not appeal to you or produce enough food or sustenance to justify the inputs. Gardens are like checking accounts in a way; we put in deposits (inputs) and we withdraw benefits (outputs). If the amount of inputs generate the required outputs the garden is sustainable. So since money converts to energy and labor the more money you have the more complicated and detailed your landscape or garden can be, but entropy will have its way with this kind of garden with out extensive inputs. Water thirsty plants, greenhouse cultivation, weed and other pest control, poorly adapted plants and wide swaths of turf all require greater inputs.

Hardscape such as walls, patios, pathways, fences etc. do not use many inputs over time, require no water or fertilizer, pruning and can be very low kinetic energy (maintenance). If done well they add aesthetic value to the outputs

-Increase Hardscape
Hardscape includes landscape elements such as walkways, walls, boulders, patios, sculptures, small out buildings etc. Since hardscape is not green or growing it uses no water, requires no pruning or other tasks to maintain. Installing strategic hardscape can improve the appeal and functionality of a landscape while cutting down on the sustainable square footage that you are maintaining. It is often wise to consult a landscape designer or architect to optimize the uses and functions of your garden.

-Mulch Mulch Mulch
Fresh mulch from chipped tree trimmings is essential for a sustainable landscape/garden. Fresh wood chips are the best source of energy for microbes when used as a surface mulch. Wood chips layered four inches thick over bare soil will improve many aspects of soil, essentially making the soil more “sustainable” for your garden by conserving moisture and adding nutrients over time (for more on mulch see the paper by LCS referenced in the GP site). Fresh wood chips are best around perennials but can also be used as walkway material in vegetable gardens, as mulch around berries and fruit trees and around perennials like rhubarb and asparagus. A well mulched garden uses less water and, in time, requires little or no fertilization.

Mulch is essential to the sustainable landscape. this aloe garden was heavily mulched initially. Its rocky soil was improved and weeds reduced thereby reducing labor energy inputs

-Maintain Light
Sunlight is the main energy input into your garden and is necessary to sustain the plants growing there. Plants that are adapted to full sun when shaded out by growing trees, shrubs or other tall plants become disease prone, produce less fruit, and are less attractive. To keep vigor up, ensure that plants get enough sunlight by pruning back intruding branches from nearby trees or other shade providing plants. Remove trees that have outgrown their space in your garden and replant with size appropriate specimens.

-Use Enduring Plants
Grow what grows well for you. Time spend on poorly adapted and fussy plants will decrease the sustainability of your garden and increase the necessary inputs of time, labor and energy. For oranamental gardens use enduring plants. Flashy annual plants look good for a few months but require replacement regularly. Long lived perennials used as specimens in a garden add value over time with little care, pest control or fertilization. I term these ‘enduring plants’. Enduring plants grow slowly but live long lives. For those who grow food vegetable gardens are a necessity and plants are mostly annual, however perennials are also an option. Rhubarb is an enduring perennial, berry vines, fruit trees, asparagus and grapes provide food year after year with low maintenance relative to annual crops. Keep fussy, pet plants to a minimum, and in containers so they can be moved when necessary to accommodate their needs.

Enduring plants live long lives, add value and are low maintenance additions to landscapes

-Recycle Reuse
Gardeners spend a lot of energy clipping, removing and throwing away unwanted yardwastes. Consider composting trimmings and weeds and recycling these materials back into the garden. This reduces energy spent processing these materials and decreases the cost of purchasing organic materials for your garden. Lawn clipping, leaves, and tree trimmings (when shredded) can make a high quality compost if carefully produced. Many extension offices have publications on home compost production.

Study of natural ecosystems provides an interesting window into sustainable landscapes. Plants grow with each other in a balance or harmony that results in a sustainable landscape. In these natural settings, litter accumulates under tree canopies (think mulch in your garden) providing a continued source of biological and mineral motivation for soil to be productive. Annual plants grow each year where sun is abundant and shade loving perennials inhabit the understory of trees. The right plants in the right place create a beautiful environment.

A root’s life

Roots are the unsung heroes of plants! But unfortunately your every day hard working root gets little respect from gardeners. “We are so taken for granted” whined Radix– “Its just so hard, we are all down here in the dark, nobody see’s us, we get no admiration, yet we work so hard!”. Radix is your every day “working root” mostly ignored by gardeners. Even though the seasons change, and leaves come and go, Radix is growing most all the time! Gardeners love the color of flowers, the texture and shape of foliage, the architecture of tree tree branches and admire all the things plants do above ground. They beautify the world, provide us food, and provide oxygen for us to breathe. We heap our admiration on above ground functions of plants, but without Radix, and all the other roots, the above ground parts would perish.

Healthy roots growing under wood chip mulches.

Growing plants is about growing the whole organism. We may pick the fruit, admire the flowers, or rest under the shade, but none of it would be possible without proper care of root systems. Roots have varied functions—they provide anchorage so the plant can stand upright; they absorb minerals and water; and they store energy in form of starch. Plant shoots grow in the realm of light and much of their adaptations revolve around catching sunlight. Their atmosphere is mostly nitrogen and oxygen. Roots grow in the realm of soil and darkness, their atmosphere is oxygen restricted and dominated by carbon dioxide and even toxic gases like sulfur dioxide, and methane if soil conditions become saturated. Just like all parts of plants, oxygen is required by roots to respire or utilize chemical energy for their growth. Poor Radix can choke if the oxygen supply is limited.

Shoots live in a herbivorous world. Plants get eaten by animals. Because they have buds of all kinds they can grow back, leaves may contain alkaloids and other molecules that reduce herbivory, and plants can arm themselves with spines, thorns and prickles, but roots live in a microbial world. While microbes can grow on most plant surfaces, the root system is bathed in microbes (the soil food web). Not only do roots have to defend themselves underground but they have specific alliances that let them do that! As you know from some of my other blogs, root pathogens can kill all ages of plants from seedling to mature oak trees. The happens when pathogens (which are opportunists) are not well regulated by soil microbes, or when plant root systems are stressed in some way. Large populations of soil bacteria, fungi, nematodes and arthropods limit the development of opportunistic pathogens. These organisms are supported by soil carbon or organic matter which is essential to their abundant reproduction in soil. This carbon is best supplied to root by mulching with freshly chopped Arborist chips.

To examine root health, expose the cortex with a knife. It should be white, an unhealthy root will be discolored. Many roots are black on the outside and this is normal as they have melanin in their epidermis as a protectant against microbes.

Roots store carbohydrates made in leaves as starch. This stored energy can be used for their growth or redistributed through the plant later. In order for stored starch to be used, it must be converted back to glucose (by enzymes) and then broken down through chemical respiration. These processes take oxygen which is limited in soil as a function of depth. The deeper you go the less oxygen. This is why trees and most plants have roots in the upper foot or so of soil. This upper foot of soil is sensitive and fragile. It can be compacted by foot traffic or equipment and lose oxygen content. Weed barriers, fabrics, and sheet mulching deprive soil of gas exchange, and the amount of carbon dioxide increases at the expense of oxygen under these barriers. Too much water can fill soil pore spaces causing saturation that usually contain oxygen and decrease the amount of available oxygen since it does not dissolve well in water. All of this also applies to the soil microbial communities which also require oxygen to grow and thrive.

A healthy soil contains plant roots (top) and an abundance of micro organisms. These soils will be porous, contain higher levels of organic matter and mycorrhizal fungi (white portion at the bottom of image)

So how do we respect Radix and all the other hard working roots? Promote soil health by avoiding tillage and cultivation. Use Mulches made from fresh tree trimming chips, avoid compacting soils with machinery, and do not shock soils with excessive application of manure, fertilizer, or water which can perturb the microbiology of a soil. I also suggest you learn to admire roots for all that they do for plants in your garden. Check in with Radix every now and then by digging down and looking at root systems. See if they are growing. Try to learn the seasonality of peak root growth so that you avoid practices that may harm roots during their critical growth periods. Be alert to the symptoms of root rot on garden plants especially at the tops of plants such as leaf drop, shoot dieback and wilting.

Potting Soil Poison

Gardeners often struggle to grow plants in containers. You may feel that you have a really black thumb at times when newly planted seedlings fall over dead or fail to thrive. The problem may not be disease or poor gardening acumen but rather your container media otherwise sold as “Potting Soil”. A trip to one of the big box stores or a larger retail nursery will offer gardeners many choices of bagged potting soils. They are marketed to give you the impression they will grow anything and everything. But do they?
Over the last couple of decades I have done comparative potting media trials where I plant small plugs (usually impatiens) three per six inch container. I go out and find every retail brand of potting mix I can find and plant them all up and then follow them for about two months. I’ve been thinking of revisiting the studies and seeing if anything has changed. I also want to test the assumption that you can’t predict the grow ability of a potting soil by reading the ingredient label as some research suggests. While there can always be a surprise with any given product, I think that from my many trials I can make some suggestions to improve the outcome of your gardening adventures in containers.

Soil on the left has no nutrients same soil on the right with 2 grams of ammonium sulfate added on the surface of the medium one time.

Growing media is not the same as soil. Since media are placed in containers, often plastic ones, they need to be very porous. Porosity of up to 50% is not uncommon in container media. The bulk of the media needs to hold water and minerals for plant growth. Usually an organic material that has a high cation exchange capacity is used. The darling of potting mixes has been Peat Moss. Since peat moss harvesting is damaging to the environment (see previous blog by Linda CS), many gardeners may want to avoid media with peat moss. Bulking agents that do not hold much water or nutrients are also added to “lighten” or aerate the medium. Horticultural perlite (expanded volcanic glass) is the most common. Sand is also sometimes used but it adds weight to the bag and is not preferred by manufacturers. Some media use bark or other wood products to provide greater porosity.
There are usually about 18 to 20 different media on the market at any given time and the results of growing plants in them is predictable. About 10 of the media will not grow anything very well, 5 give ok results and about 5 of the products will grow a nice plant. A lot of the reason for success or lack thereof is about nitrogen chemistry. If no fertilizer is added, the medium will likely not grow well. You can add your own fertilizer and make about  ½ of these poor growing media work. One quarter to one half a teaspoon (approximately 2gm) of ammonium sulfate usually peps up most media that are ok but lack nutrients.  This is an amount used in a standard height 6inch (15cm) diameter plastic container.  Larger containers and plants will require incrementally more fertilizer to achieve growth goals. 
Some media will not grow even when fertilized. This is because they may contain manures, or composts and manures that have added too much salt to the medium. Adding fertilizers to these products only makes them less growable. Sometimes these potting soils will improve with leaching but then fertilizer will need to be added back later to make up for what was leached away. Generally a salty potting mix is worth avoiding.
So how can you tell if you are getting a good or bad mix. You can start by reading the ingredient list. And you will need to decode that list to help you make some decisions. What manufacturers call things can be very misleading. Look for a medium that has fertilizer added and lists what kind of fertilizer was used. These media usually grow without help. Avoid media that use manures, they are not suitable container media ingredients.

Some potting soils claim they can grow plants bigger than others, some claim to be all organic and some claim to be friendly to the earth. This is all marketing. Look for a simple ingredient list that is fortified with a nutrient charge (fertilizer). Begin there. You may want to sieve the medium to remove large particles if you are growing seeds, add more bulking agent (bark, sand, perlite, pumice) for plants that need increased porosity such as orchids, bromeliads and cactus. Don’t be afraid to modify potting mixes to suit the needs you might have. If plants don’t grow, consider adding more nutrients. After growing for some time (months to years), many media will breakdown, and the plant will need to be repotted in a new medium.

Fruit Tree Pruning Basics

Last week I helped to train Master Gardeners about pruning fruit trees. January and February are the months that we recommend fruit tree pruning in Southern California.  In colder climates, pruning may not occur until later when freezing temperatures are minimized and there is less chance of damage to new growth. While trees don’t “need” pruning to bear fruit, pruning practices can enhance fruit production, promote earlier fruiting bearing buds, and increase fruit quality if done in an informed way. In many respects, modern fruit trees have been bred for big fruit, and pruning might need to be done to prevent limb breakage, reduce the number of fruit and position it in the tree fore ease of harvest. Misinformed pruning can lead to disease or loss of bearing wood. “Fruit tree” is a broad category, but for this blog, I am referring to deciduous trees (not subtropicals such as citrus, avocado, mango etc.). Two main categories are common: Pome fruits such as apples and pears and Stone fruits such as cherries, plums, apricots, peaches, almonds and pluots.

The first thing to figure out when pruning any tree grown for fruit production is where the fruit will be formed. This requires examining and understanding buds, twigs and the age of growth that is produced. Second we need to understand the tree’s responses to pruning and how that will affect future fruit production. Finally an understanding of negative consequences of pruning is essential.

Peaches produce fruit on last year’s growth

Apples and pears produce fruit on spurs

Why prune you ask if trees will produce without pruning? Pruning shapes a tree, and helps to create fruiting buds that are conveniently placed for harvest-this keeps fruit pickable with less time on ladders. Pruning gives an opportunity to remove fruiting buds thereby invigorating remaining buds and increasing size and quality of the fruit that will form with less fruit thinning later. Pruning also gives an opportunity to remove diseased, damaged, tangled or infested branches.  While various training styles can be used for structural pruning of young fruit trees the open vase or modefied central leader systems are preferred and descriptions of them can be found in extension leaflets.  For my own trees I usually do not prune them the first year after planting in order to encourage a stronger root system.  In the second and third years I pick scaffold branches or train branches on the central leader.

Fruit is produced on various aged twigs or branches depending on tree species. Peaches produce fruit on growth from the previous year or one year old wood. Since peaches grow vigorously fruiting wood ends up on the outside of a tree. Heading back (or heading) cuts (reducing last year’s branches by at least half their length) will remove ½ the fruit and stimulate buds lower in the tree that will make more fruiting wood. For this reason peaches are usually pruned “hard” to stimulate maximum amounts of fresh fruiting wood. Apples, Pears, Plums, Cherries and Apricots produce most of their fruit on small side branches called spurs. Apples and Pears may also produce fruit from the terminal bud.

Young trees often make many long whips and these are usually headed back (heading cuts remove the terminal bud) to stimulate spurs in the following years. Once the overall shape and size of the trees are set, less pruning is required as spurs may produce fruit over decades of time. As trees mature spurs build up so removing densely clustered spurs on mature trees with thinning cuts (removing an entire branch, spur or twig) will increase the size and quality of fruit formed on the remaining spurs.

Pruning is often used on newly planted trees to form the structure of the tree. When forming the branch structure do no indiscriminately head back every branch as this will stop the growth of the branch that is headed. New growth will only resume from buds that are released to grow. Think carefully about what you want to grow and what you want to slow-down in growth. Pruning is always a growth retarding practice. Branches are best spaced up and down and around a central leader. In other training systems for stone fruits one heading cut when the tree is just a whip will create an open vase shape where all the branches arise from a single point on the trunk. While this is considered a branch defect in shade trees, it is a convenient training system for fruit trees if you don’t let the tree get too large and manage the fruit loads that are produced. Trees trained to a modified open center where branches are spaced on a central leader have stronger branch attachments and can bear greater fruit.

This apple is extensively sunburned from over pruning

As trees age and grow they require regular training with heading cuts to shorten vigorous branches of peaches or thinning cuts to remove whips, water sprouts or other unwanted branches.  Be careful not to over-prune especially in summer or sunburn can result.  When fruit sets in the spring or early summer it can be thinned by hand.  This form of pruning will increase size of the remaining fruit and quality.   Summer pruning is sometimes practiced on very vigorous trees to slow their growth and invigorate buds for the following spring.  Prune with care in the summer espeically on green barked trees like apple and pears to avoid sunburn.

Flammability of Landscape Plants–Why the lists are BAD!

California had the worst fires in the last two years of its existence as a state. Hundreds of thousands of acres of brush and forest burned. More importantly thousands lost their homes as fires moved across urban/rural interfaces to destroy communities. The entire town of Paradise, California was burned to the ground. Here in Ventura County, the Thomas Fire was the state’s largest fire by the time it was done, and hundreds lost homes. No other time in history have we been so focused on what will burn, why it will burn, and what we can do to have a “firewise” landscape.

In 2017 The Thomas Fire in Ojai, California was the largest brush fire in the history of California fire fighting. It was surpassed the following year by the Camp fire in Northern California.

Fire authorities around the world have advocated creating defensible spaces around homes that are clear of ignitable vegetation. Some authorities have mandated by law that mulch, pine needles and other debris be removed as a fire prevention measure near structures. There is a general recognition that any plant can burn. Even well irrigated plants will rapidly desiccate and become flammable in the face of strong wind and a heavy fuel load that is inflamed nearby.

Flammability of landscape around homes is dependent on several factors. Vegetation placement can obstruct or allow for fire fighters ability to reduce damage to a home. While it is natural to assume that avoiding flammable plants is a part of this process, there is no standard method for testing plant flammability. Many lists of firewise plants have unknown origin or are just guesses. Flammability can be assigned four dimensions: ignitability, sustainability, combustibility and consumability. These factors refer to time till ignition; time a material will burn; rapidity or intensity of burn and quantity of material that will burn. The components of combustion are influenced by moisture content, percentage of carbon, percentage of volatile compounds; surface area to volume ratio and other factors. The varied factors are usually not all studied at the same time and are not all equally important to plant flammability. Thus assessing flammability even within the context of a controlled study will only partially assess a material’s likelihood of burning under various conditions. Hence most of the lists are not that helpful.

While fresh wood chip mulches are consideder by some fire authorities to be a fire hazard, there is little published evidence of this and a single element like mulch can not be tied to flammbability of the landscape.

Behm et. al. showed that variations in flammability between plant species exists, and also that species within the same genus can vary widely in their flammable nature. Thus lists should not assume species in the same genus all have the same flammability. There is some thinking that flammability is an evolutionary trait that some plants exploit to their benefit, i.e. they are made to burn, such as the California Chaparral plant communities. Simply burning fuels in a laboratory setting does not take into account many of the factors associated with fuel burning intensities. Species differences notwithstanding, the amount of dead plant matter (dead twigs and leaves) vs. live matter, the arrangement of leaves, mulch and adjacent species all play a role in the flammability of the landscape itself which cannot be studied in a lab setting. Landscapes are “fuel bed complexes” with multiple elements that are not replicated in studies. For instance, small leaves from some shrubs ignite easily, but when burned as litter, develop low heat release rates because of poor ventilation.

Testing live plant materials alone is misleading because the flammability of an intact shrub is caused by the interaction of live matter with “necromatter”. Dead tissues are thermal catalysts which ignite live material. The ratio of necromatter to live matter influences flammability and is generally not well studied. Fire modelling also has a role in understanding what will burn. Both wind and slope increase the spread rate and the fireline intensity of burnable plants. Fire behavior characteristics on a given plant also are affected by both its physical and chemical characteristic — tissue mineral and water content have impacts on flammability. This bodes poorly for firesafe plant lists because lists do not consider plant physical or chemical attributes and if moisture levels are low it will burn regardless of its structure and geometry or its status on a list. Sometimes though a dense wall of well hydrated vegetation can save homes such as the avocado orchards that held back fire in the Thomas Fire in Montecito, Ca.

While lists don’t satisfy scientific rigor they are great for policy makers and homeowners who want to know what to plant. Unfortunately many lists are just compilations of other lists, none of which were based on research. Sometimes lists confuse one desirable characteristic with another, such as native plant lists that tout drought tolerance. Many drought tolerant plants are not fire resistant especially after a long dry period, indeed they often evolved to burn under such conditions.

For those that live in fire prone areas, fire resistant plant lists will always be an attractive or even required element of landscapes. Lists will not save a structure in the face of high winds and adequate fuel or embers. A defined defensible space around buildings, and maintenance of plantings that removes dead matter, maintains irrigation, and maintains proper distance from combustible surfaces will be more effective than choosing landscape plants from flammability lists.

References:
Fernandes, P.M. and M. G. Cruz. 2012. Plant flammability experiments offer limited insight into vegetation—fire dynamic interactions. New Phytologist 194: 606-609

Behm, A.L., M. L. Duryea, A.J. Long, and W.C. Zipperer. 2004. Flammability of native understory species in pine flatwood and hardwood hammock ecosystems and implications for the wildland –urban interface. International J. of Wildland fire 13: 355-365.

White, R.H. and W.C. Zipperer. 2010. Testing and classification of individual plants for fire behavior: plant selection for the wildland-urban interface. International J. of Wildland Fire 19:213-227.

Fertilizer—Friend or Foe to disease causing organisms?

Gardeners that read this blog understand that minerals are absorbed mostly by plant roots as ions, and are essential for plant growth and development. Some minerals are required in parts per hundred, and are macro-nutrients while others are only required in parts per million or parts per billion, and are considered micronutrients. As long as enough of the 16 most essential minerals are available, plants grow and reproduce in a healthful way. When not enough of one of the essential elements are available, a deficiency occurs, and plants

Nutrient deficiency symptoms in new growth of Camphor tree

may present deficiency symptoms. Mineral nutrient deficiency symptoms are considered abiotic disorders. There are, however, cases where excess or deficiency of elements can be predisposing to disease caused by pathogens. Most some mineral elements do have a role in the development of disease caused by some pathogens but this is largely demonstrated in agriculture and often most home gardens do not suffer nutrient caused plant diseases.
Diseases can be either biotic with a living pathogen driving the disease or abiotic where a physiological condition is caused by the environment and host interactions. Mineral nutrients also are often implicated in abiotic disease.

 

Blossom end rot in tomato fruit

Perhaps the most famous one is blossom end rot of tomato. This disorder is seen by gardeners around the country and is widely attributed to calcium deficiency. Expanding fruit are a tremendous “sink” for nutrients like calcium and it was thought that if not enough calcium was available in soil the disorder would occur. It is accepted that localized Ca deficiency (in fruit) may play a role in the initiation of blossom end rot, but there are many other factors that lead to the full blown condition, some of which are not fully understood. The fact that blossom end rot (BER) occurs in calcic soils in California underpins the complexity of this disorder.  In many cases, simply adding calcium to soils does not correct the problem. Research in California suggest that the plant hormone abscisic acid (ABA) regulates water flow, the development of water conducting tissues, and calcium uptake in tomato. Researchers found that ABA treated tomatoes were cured of blossom end rot.  For gardeners, making sure plants are fertilized, and avoiding varieties susceptible to BER is the best course of action.

Soil-borne pathogens are perhaps most affected by minerals dissolved in soil solution. Minerals can act in specific ways (specific ion effects) or as total ion effects (osmotic strength or concentration) having direct impact on pathogenic propagules or on the host itself. In a biological disease relationship there are several possibilities:
• Specific ions harm or favor the pathogen.
• Specific ions harm or support the host.
• Ionic strength changes the root environment making the host weak and susceptible.
• Ions change the pH of the soil solution making it more or less fit for a pathogen or the host.
• Ions change the soil physical environment making it more or less fit for a pathogen or the host.

Root rot of annual color plant is a common find in many garden centers

While it is often espoused that the well “fed” or fertilized plant is resistant to disease, it is rarely borne out in published research on ornamental plants. Keeping a good nutritional level in nursery stock will not necessarily protect plants from many of the virulent pathogens that are capable of causing disease. Excess fertilization may lead to luxury consumption by the fertilized plant and can produce succulent growth that will exacerbate of such diseases as powdery mildew. It is well known that seedling diseases caused (damping off) are more severe with increased medium salinity and it was later discovered that increased soil salinity also increases susceptibility of ornamental plants to Phytophthora root rot diseases. Phytophthora is the most common pathogen associated with rotted roots in most gardens.

Plant mineral nutrition supports plant health in two basic ways (1) formation of mechanical barriers (cell wall strengthening) and (2) synthesis of defense compounds that protect against pathogens. The role of specific elements and their compounds is complicated and unique to each disease/host system. Certainly deficiencies of molecules such as calcium and potassium can interrupt either defense mechanism and if nutrients are supplied enough to prevent deficiencies there is little role of nutrients in preventing disease.
Root rot is a disease of thousands of ornamental plants and a serious problem in many gardens. Root rots caused by Phytophthora spp. occur in a range of nutritional and pH ranges. Nitrogen has been shown to lessen root rots and this is likely due to conversion of nitrogen into ammonia gas in soil which acts as a fumigant. Many studies found no relationship of nitrogen source to root rot disease development.  Calcium increases disease resistance to root rot in avocado and other plants. While it is understood that calcium has direct effects on plant membranes, root cell membrane leakage, cell wall thickness, and many other host factors, there are also direct effects on the pathogen in soil. Calcium ions reduce the production of disease spores and disrupt their ability to swim and find susceptible roots. When soils and soil less media are low in soluble calcium, when calcium is easily precipitated out of solution, or when the pH is high and limestone minerals decrease the availability of calcium, root rots will be able to infect.  Increases of sodium ions in soils and soil less media can also increase Phytophthora caused diseases.

Some non-essential elements have become popular as disease suppressants. Research has shown Silicon increases resistance of plants to powdery mildew, root rots and to stress in general. Silicon is implicated in strengthening cell walls as well as in defense protein production in plants. But not all plants are capable of utilizing silicon, so its role in plant defense is limited to those species (mostly grasses) capable of metabolizing it. Silicon has been erroneously recommended for widespread disease prevention. Its actual utility is likely very narrow. Much more study is necessary to understand silicon’s role with ornamental plant-pathogen systems. Gardeners will find little use for silicon as a disease prevention too.

Plants extract minerals from container media and garden soils—the process is complicated; it is mediated by the substrate/soil, water chemistry, temperature and the applied minerals (fertilizers) as well as by plants. Gardeners should apply fertilizers that can supply a constant low level nutrient charge or rely on nutrients provided in mulches. Fertilizing decisions are best guided by having a low cost soil analysis by a University lab. Supplying extra soluble calcium may be helpful in managing root rots, especially where heavy rainfall is normal and soils may be highly leached. Preventing salt build up (by leaching irrigation) in high salinity soils (low rainfall places) and that can occur when media dries out, will also help plants avoid infection by root rot organisms. It is good to remember that fertilizers never cure diseases, but there may be a role in preventing disease when plants are nutrient deficient.
References
Baker K.F. 1957.  The UC System Producing Healthy Container-Grown Plants. University of California Division of Agricultural Sciences Agricultural Experiment Station Publication #23.

Cherif M., Asselin A., Belanger R.R. 1994. Defense responses induced by soluble silicon in cucumber roots infected by Pythium spp. Phytopathology 84:236-242.

Datnoff, L.E., Elmer, W.H. and D. M. Huber eds. 2007. Mineral nutrition and plant disease. APS Press The American Phytopathological Society, St. Paul, MN. 278pp.

Downer A.J., Hodel D.R., Matthews D.M., Pittenger D.R. 2013. Effect of fertilizer nitrogen source on susceptibility of five species of field grown palms to Fusarium oxysporum f. sp. canariensis. Palms 57: 89-92.

Duvenhage J.A., Kotze J.M. 1991. The influence of calcium on saprophytic growth and pathogenicity of Phytopthora cinnamomi and on resistance of avocado to root rot. South African Avocado Growers Yearbook 14:13-14.

Faufeux F., Remus-Borei W., Menzies J.G., Belanger R.R. 2006. Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiology Letters 249:1-6.

Kauss H., Seehaus K., Franke R., Gilbert S., Dietrich R.A., Kroger N.. 2003. Silica deposition by a strongly cationic proline-rich protein from systemically resistant cucumber plants. Plant J. 33:87-95.

Lee B.S., Zentmeyer GA. 1982. Influence of calcium nitrate and ammonium sulfate on Phytophthora root rot of Persea indica. Phytopathology 72:1558-1564.

Ma, J.F.  2011. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Science and Plant Nutrition 50:11-18.

Macdonald J.D., Swiecki T.J., Blaker N.S., Shapiro J.D. 1984. Effects of salinity stress on the development of Phytophthora root rots. Cal Ag 38:23-24.

Messenger B.J., Menge J.A., Pond E. 2000. Effects of gypsum on zoospores and sporangia of Phytopthora cinnamomi. Plant Dis 84:617-621.

Powell C.W., Lindquist R.K. 1997. Ball Pest and Disease Manual (2nd ed). Ball Publishing Batavia Publishing. 426 pp.

Span T.M., Schumann A.W.  2010.  Mineral nutrition contributes to plant disease and pest resistance. University of Florida Publication #HS1181. http://edis.ifas.ufl.edu.

Tonetto de Freitas, S., K.A. Shackel and E. J. Mitcham. 2011. Abscisic acid triggers whole-plant and fruit specific mechanisms to increase fruit calcium uptake and prevent blossom end rot development in tomato fruit. J. of Experimental Botany 62:2645-2656.

Daylor, M.D. and S. J. Locassio. 2004. Blossom-end rot: A calcium deficiency. J. of plant Nutrition 27: 123-139.

Zentmeyer G.A. 1963. Biological control of Phytophthora root rot of avocado with alfalfa meal. Phytopathology 53:1383-1387.

Trees and Turf a NO GO

It seems so simple to plant a tree.  But to grow a tree is more difficult!   In many parts of the United States there is enough water for trees and turfgrass, but it is often a bad idea to mix the two. You may have observed that sometimes young trees do not grow as well when planted in turfgrass. Certainly this is a generalized view and tree/turfgrass genetics are very different between their respective species. So it is natural to expect different outcomes when planting different species of trees in any landscape setting, turfgrass notwithstanding.  Another factor to consider is time. The day we plant a tree is not the same time reference as ten years later. In ten years, the tree if it is successful, may have modified

A basic incompatibility: Eucalyptus growing in warm season turfgrass (kikuyugrass) resulted in excess surface moisture and crown rot of the eucalyptus killing it.

its environment significantly, making turfgrass cultivation more difficult.  Most tree/turfgrass difficulties begin when the tree is young–as a newly planted tree.  If it succeeds in growing a large canopy, difficulties will ensue for the turfgrass.  Sometimes turfgrass  cultural requirements (frequent irrigation) can predispose trees to root or root-collar diseases such as Phytophthora.

Trees and turfgrass have some similar and very different requirements from their respective landscape settings. Both trees and turfgrass require sunlight to photosynthesize and grow. Both would usually prefer full sunlight without shade. As trees grow they shade the turfgrass sward beneath their canopies. Turfgrass can lose density, and become a thinner sward that is more susceptible to diseases such as powdery mildew. Trees grow roots near the soil surface and as they become larger, some trees may even proliferate roots near the mowing height of turgrass and suffer repeated injury from mowers, also increasing the risk of pest invasion into the tree. Both trees and turfgrass need water and soil minerals to grow. While soil minerals are usually abundant enough for both, water is often limiting for one or the other in this landscape combination.

String Line Trimmer’s or weed whips will injure both young and older trees in the landscape. Image: Chicago Tribune.

The maintenance practices required for turfgrass often injure trees, especially young trees. Mowing near trees can injure the bark on the lower stem especially if the mower comes to close and actually scrapes the young stem. Since grass will grow longer where the mower can’t reach right near a tree stem there is a temptation to use a string line trimmer or weed whip to maintain the grass that has shot up around the tree stem. The repeated use of string line trimmers around trees removed young bark and can “girdle” the tree stem. While trees can survive these practices their growth rates are slowed considerably.

Constant injury from mowing equipment has injured this elm killing the tissue on a major root flare. This is now an entry point for decay and other fungi.

One approach to having trees growing with turfgrass is to remove a ring of turf away from the tree and replace it with mulch. This eliminates the need to maintain the turfgrass near the trees stem and root flare. Richard Harris and others (1977) found many years ago that a one foot circle removed around the stem of newly planted trees would increase their establishment rates compared to trees with turfgrass growing right near the stem. Whitcomb (1979) also recognized that turgrasses are competitors with newly planted shade trees. Whitcomb’s earlier research (1973) showed reduction in root density when trees were planted in a sward of Kentucky bluegrass.

A ring of mulch replacing turfgrass around this tree keeps turf maintenance equipment from injuring it.

As trees grow it is important to widen the ring around them giving more room for mulch and reducing the competing turfgrass underneath their expanding canopies. This is a general concept; some trees can live in turfgrass without problems as long as resources are not limiting. Riparian trees such as sycamore can grow well in swards of turfgrass, but other species such as Peruvian pepper (Schinus mole) tend to languish.

Trees are adapted to drop leaves, this is termed litterfall and it becomes part of their natural mulch. Litterfall tends to prevent annual plants such as grasses from developing. Fallen leaves, fruit and twigs are recycled by fungi providing nutrients back to the tree. Turfgrass cultivation interrupts this process and while trees obtain some of the nutrients supplied to turfgrass, as Whitcomb observed, turfgrasses are fierce competitors for nutrients so young trees are especially susceptible to nutrient deprivation in turfgrass swards. For the best results in your

This young tree has an expanding mulch area to help sustain it and reduce competition from turfgrass.

garden, it is best to maintain some distance between young trees and turfgrass. It is optimal if the mulched (no turf) area under a tree can expand to its dripline as it grows.

 

 

 

 

Fertilizers — a cautionary tale

Gardeners are assaulted with marketing campaigns nowhere better than in the fertilizer aisle of a garden center. There are so many choices and the labels suggest that fertilizing garden plants is a complicated process that requires specialized products.

Fertilizers can be marketed for many reasons; here one brand offers many products

Laws require that fertilizers list the proportion of the most important macronutrients on the front of the bag. Nitrogen, Phosphorus and Potassium abbreviated N, P, K, respectively, will always be shown with the ratio of their concentrations such as 5-10-15. This indicates the bag contains 5% nitrogen, 10% phosphorus and 15% potassium. The bag will also specify the weight of fertilizer contained in it, usually in pounds here in the United States. Of course, labeling requirements vary in other countries. Since fertilizers are not drugs or pesticides the labeling requirements are relatively lax and thus are open to extensive marketing. With fertilizers, as long as the contents are labeled and the proportion of N P and K are somewhere on the bag, any other claim can seemingly be made.

Laws require that fertilizer manufacturers list the N-P-K ratio in % by weight on the bag in a prominent place

For years fertilizers have been designed specifically for certain plants. You can commonly purchase citrus food, camellia and azalea food, vegetable fertilizer, and of course turfgrass fertilizers which have been widely marketed for decades. Some fertilizer blends are based on research. Turfgrasses have a high requirement for both Nitrogen and Potassium and you often see elevated percentages of these in turfgrass fertilizers. Palms also require more potassium than Phosphorus and products have been developed that are “palm special” fertilizers. Despite all the research, manufacturers still throw in some phosphorus even though phosphorus is abundant in the United states in most soils. It is not clear to me what makes citrus food different from any other fertilizer, although claims that it is best for citrus can usually be found on the product. We grow more citrus in Ventura County, particularly lemons than anywhere in California, but none of the growers apply “citrus food”.

There is no such thing as “Citrus Food”

Some fertilizers are marketed for acid loving plants. Acid forming fertilizers have the ability to temporarily reduce pH in media or soil to which they are applied. This is because they have a high amount of ammonium or urea as the nitrogen source. Microbes in soil oxidize the nitrogen to nitrate and release hydrogen ions that make the soil more acid. Continual use of acid forming fertilizers can drop soil pH to dangerously low levels and make nutrients unavailable to many plants. This is especially the case in high rainfall climates where mineral nutrients are easily leached from soil. Another product often used to lower pH is aluminum sulfate. Often marketed as “hydrangea food” it helps to promote blue flowers in this plant. Special care should be given here as aluminum can easily be applied to toxic levels.

Technically aluminum sulfate is not a fertilizer: note the 0-0-0. It can be toxic if applied too much and can make soil too acid.

For as long as fertilizers have been sold they have been marketed as products that make plants grow better. When the importance of mycorrhizae were discovered, manufacturers found a new marketing angle that could be used to sell fertilizers. Now countless manufacturers include mycorrhizal inoculants as part of their fertilizer blend. Not only are we able to feed the plant but we can also feed the soil with beneficial micro-organisms. This all sounds great but often the inoculant, if present in the bag, is not viable. In many cases garden soils already have plenty of mycorrhizal fungi in them so they really are not needed in fertilizer products. Other fertilizers include growth stimulants such as humic acid, fulvic acid or humates. Research does not support their efficacy in horticulture.

Most gardens do not require mycorrhizal inoculants.

Fertilizer manufacturers feel that it is important that we gardeners use things that are “all natural”. I don’t know what is natural to you but for me it is natural to challenge claims that have no scientific basis. The very practice of fertilizing plants is NOT NATURAL! But the products are often purported to be. Sometimes natural is synonymous with organic. There are an amazing number of organic fertilizers, so much so that it becomes bewildering as to which one to choose. Organic fertilizers may or may not be ‘certified’ by an agency such as OMRI as meeting some standard. Generally speaking organic fertilizers are made from some carbon based source. They can be sourced as manures or as plant or animal based meals or products. The N-P-K ratios vary widely.

There are many organic fertilizers. They usually have low N-P-K values; some are good slow release sources of nitrogen.

I am always careful to avoid manure-based organic fertilizer products as they can be unnecessarily salty. While many organic fertilizers may be rather “slow release” as they need to mineralize from organic to soluble forms, this is often not the case with manure based products which can easily burn plants if over-applied. Some organic fertilizers are made from rock like substances such as leonardite which are very slow releasers of nitrogen. These products are mined and are similar to coal but have fertilizer value. In trials I have conducted on containerized plants some of these products were top performers.

Biosolids are made from treated human waste. They are an excellent source of nitrogen, but may contain unwanted metals.

Another common type of organic fertilizer are the biosolids products such as Milorganite. These are processed sewage sludge products that are de-watered and made into fertilizer. They are very effective nitrogen sources. Some biosolids fertilizers have also been sources of metals, such as zinc, lead and cadmium. Metal contents are closely monitored by manufacturers but since these products come through municipal systems, zinc, copper and other metals such as lead are often elevated. Slow release and organic fertilizers are useful if they are applied with understanding of the mineral needs of the plants they are applied to.

 

Most plants grow fine without fertilization and the main fertilizer element that plants respond to is nitrogen. So despite all the marketing claims seen on fertilizer bags, a fertilizer with an adequate source of nitrogen will likely benefit plants in need of that element. Specialized fertilizers that promote flowers or roots are not substantiated by research. Elements other than nitrogen are usually not required and ratios of N P and K are not tuned for more blooms or more roots. Adding phosphorus to your fertilizer does not promote flowering unless your soil is deficient in phosphorus (a rare condition). Gardens in high rainfall areas will likely need more potassium and nitrogen, but Phosphorus is hardly ever limiting to plant growth. Most plants do not need or require special fertilizers but will respond to fertilizers that contain an element they and soils they are growing in are lacking.

Phosphorus does not promote flowering. “Bloom maker” fertilizers are a marketing gimmick.

For gardens that have a loam soil texture, little fertilizer will be needed. Soil types often determine fertilizer needs for plants. Sandy soils likely need the most fertilizer because they do not hold nutrients well. They are also the most likely soils to lead to pollution because fertilizer elements will leach easily. Plants growing in sandy soils are also at greatest risk from injury of overfertilization. Plants growing in clay soils are least likely to require fertilization because clays hold and retain cations so well. An informed way to fertilize your garden is to obtain a soils test and base your fertilizer program on the results you obtain. For more on technical details of fertilizing see John Porter’s column in this blog archive.

 

When you think you need to fertilize garden plants follow these suggestions:

-Base your fertilizer program on a soils test
-Fertilize sandy soils more frequently than clay soils but with smaller amounts
-Most gardens require some nitrogen but not Phosphorus or Potassium so look for NPK ratios with X-0-0 as these products will only supply nitrogen.
-Some plants such as palms and turfgrass benefit from potassium so use a product with X-0-X
-Do not fertilize at planting time, wait until plants establish
-Always apply water after applying soluble fertilizers so they are dissolved
-If using Organic fertilizers chose one with a higher N content
-Never over-fertilize. Landscape fertilization can impair natural waterways resulting in algal blooms that kill fish and other aquatic life.

Soil compaction–the urban stress of death for shade trees

I was taught in horticulture school that the ideal soil is composed of 50% solids and 50% voids or spaces which are themselves composed of a variable amount of water from small amounts to as much as 25% water when the soil is at field capacity or the amount of water left in soil after gravity has pulled all the free water down in the profile. So the “ideal” soil always has 25% pore spaces or more depending on how much water is present. These conditions are vital for root growth since roots go through the chemical process of respiration which involves absorbing oxygen and giving off carbon dioxide. For gas exchange to happen in this ideal soil, spaces or voids are important, and necessary. A well-structured soil has micro aggregates (pea sized or smaller clumps of soil) in high concentrations which creates many of these spaces and is said to have high porosity.

Porosity in soil is created by the action of roots, fungi and soil fauna developing channels, micro-aggregates and incorporation of organic matter so that soil becomes highly “structured”.

Porosity – the amount and types of voids – is determined by two major factors: 1) The size and distribution of the soil particles; and 2), how those particles are arranged. Sand, silt, and clay particles can be arranged and formed into pathways that help move air and water. These paths are formed by past root channels and the movement of organisms like worms and insects. These channels are glued together by exudates from roots, bacteria and fungi. This organic, both living and dead, soil fraction also add and stabilizes porosity. All together, soil particles, plant residues and microorganisms create a fragile structure that adds more porosity than just the pores and voids created by spaces between the soil mineral particles.

Soil structure is physically crushed and destroyed by cars driving over this tree planting area. As the surface compacts, runoff increases, the soil holds less water and oxygen as a result tree roots die.

Structure and porosity can be physically destroyed or crushed. The soil can be squished by heavy equipment or constant foot traffic of animals, such as humans or horses, or others that constantly tread over the same soil. Compacted soil can be near the surface (the worst for trees since their roots are mostly near the surface), or lower down in the profile. A “plow pan” is actually a compacted zone at the depth of plow or ripping agricultural implements where soil structure is constantly destroyed at the same depth over and over. As soon as roots and worms create a new pathway and reinforce it with micro-aggregates and glues, it is destroyed again, creating a zone of loosened soil where the implement has traveled, but a zone immediately below what which has been compacted by the pressure of the implement.

Most horticulturists and many gardeners know that compacted soils are bad for plants growing in them. Shade trees frequently have restricted growth in these kinds of soils. This can happen at a young age when trees are just planted or on large specimen trees, such as in parks that have the soil compacted around them by visitors. Footpaths, picnic tables, playground equipment or any publicly attractive park feature will often have compacted soils in the area.

Deprivation of litterfall and mulch layers, either through wearing out (grinding of organic matter by foot traffic) of the mulch or by mulch/litter removal through raking will promote compaction by removing the cushioning effect of that mulch layer. Sadly, the tree itself can be the feature that attracts people to it, resulting in compacted soils all around its base that limits its health.

Tree growth is limited when soil is compacted around the trunk. Turf loss, and a dry soil are symptoms of a compacted zone around this tree

What is not so well known is why growth is slowed in compacted soils. The effects of compaction are multi-fold. Compacted soils are less porous because the compaction literally reduces the air pockets in the soil, making it more dense with lower oxygen diffusion rates. Soil with destroyed structure becomes less permeable to water infiltration and holds less water. Under these conditions tree roots may not be adequately hydrated, and cannot physically penetrate the highly compacted soil. Thus, they are not able to develop and expand and explore enough to supply the needs of the tree. Reduced soil oxygen, along with other site, soil, and tree variables such as water and nutrient uptake, are all reasons for restricted tree growth.

There is compelling evidence that different species of trees can exert greater pressure at their root tips to break through compacted soils. Different tree species also have different root architectures – finer, deeper, shallower, etc. Thus, there is a genetic factor in a tree’s ability to deal with this soil problem.

Soils are more or less compactable depending on their texture, structure and moisture status. Generally a dry soil is harder to compact that a moist one. Dry soils resist compaction (but still can be compacted) because the soil aggregates stiffen as they dry. Wet soils are easily compacted but people and machinery also easily sink in very wet soils. Waterlogged soils may or may not have structure, but the water in the pores, prevents further collapse of the soil structure. Soils that are moist (at field capacity) are just right for growing plants, and are also perfect for compacting and thus must be protected from compaction.

Soil compaction is measured by calculating what’s called bulk density (Bd). Bulk density is the weight of soil in a given volume, and is measured in grams/cubic centimeter. In order to measure bulk density a special soil sampling device called an “intact soil core sampler” is used. This device extracts a core of soil while preserving its structure. The volume of the sample is a constant. The soil sample is removed and dried to drive off all the water and then the weight of dry soil is divided by the known sample volume giving the bulk density.

Bulk densities vary depending on the soil texture (%Sand:Silt:Clay) and to a smaller extent on the organic matter content. Sands generally have very large particles, more pore spaces and lower bulk densities than silts, loams and clays which willhttps://i1.wp.com/www.deeproot.com/blog/wp-content/uploads/stories/2014/04/Soil-organic-matter-soil-texture-table1.png?resize=636%2C326

A Comparison of Root Limiting Bulk Density for Different Soil Types (NRCS 1998 in Dallas and Lewandowski, 2003)have the highest bulk densities. Thus compaction is determined by measuring both bulk density and soil texture. Generally, pure rock has a bulk density over 2.65 g/cc. Uncompacted sands may have bulk densities of 1.2-1.4, while loams and clays may have Bd from 1.5-1.8 g/cc. A sand may be compact at 1.4 but a clay may have a higher Bd of 1.5 and not be considered compacted. Organic soils can have Bd that are much lower – 0.02-.9 g/cc. Generally, soils (average of all textures) with bulk densities over 1.5 can be suspected to be compacted and will limit tree growth.

Bulk density for a given soil is not a fixed property, it can change depending on the history of what has happened to the soil. For instance, in an annual color bed or vegetable garden bed, the soil may be turned or tilled by the gardener, amended, and replanted. During this process structure is destroyed, but the organic matter, growth of the crop, and time foster a new soil structure, perhaps even more porous than the soil was previously. This can happen in one growing season. In the case of compacted soils around trees, it can take years for a mulch laid over a compacted soil to correct the compaction.

Another way of looking at this is: if you can get the sampler into the soil, its likely not compacted, but if you have to use a hammer to get it into the soil it might be compacted (or dry). Pressure required is going to depend on the soil moisture, as well as the state of compaction. Compaction can also be measured by a device called a penetrometer which quantifies resistance to penetration. We as gardeners can use a screwdriver, if you can push it into soil; it is less compacted than if you can’t. The screwdriver test is also used to test for moisture content–when soils dry out, they resist penetration. The depth of water penetration in an irrigated soil is the depth to where the screwdriver stops when pushed in. So, it is easy to confuse a compacted soil with a dry soil. Also, if a soil is compacted, water will not easily enter, so many compacted soils are also perennially dry soils since irrigation does not easily penetrate them. This can be seen as increased runoff when you try to irrigate or ponding if the compacted zone does not drain away.

How do we fix compacted soils with high bulk densities? I was always taught that chemical fixers like gypsum, soil penetrants, or other chemical means will not affect a structurally damaged and compacted soil. The only way to fix them is to physically un-compact them. So, further destroying structure by ripping, drilling, trenching, air spading, or in some other way breaking up the compacted layers is the thing to do. Basuk (1994) cites cases where soil modified to treat compaction actually re-compacts (bulk density increases) over time (2-3 years after a compaction relieving treatment is applied). Numerous studies indicate that breakdown of arborist chip mulches will lead to reduced bulk density, but little is known about actual bulk density reductions with mulch applications over time. I am confident mulches will reduce bulk density, but given the diversity of soils, textures and compaction levels, I can only imagine this is a variable response. Removing the cause of the compaction, (foot traffic, machine usage etc) is the first step. Mulching following some kind of “soil fluffing” procedure should begin the process of increasing soil porosity and reducing bulk density. It may take years to relieve compaction passively through the action of mulching. If soil can be mechanically broken up, the compaction issue is solved and soil structure will slowly be reformed in time depending on what is grown thereafter.

References:
Bassuk, N. 1994. A review of the effects of soil compaction and amelioration treatments on landscape trees. Journal of Arboriculture 20:9-17.